Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is the most common behavioral disorder in childhood with substantial heritability. Pharmacological and molecular genetic studies as well as characterization of animal models have implicated serotonergic dysfunction in the pathophysiology of ADHD. Here, we investigated the effect of polymorphic variants in the gene of the tryptophan hydroxylase-2 (TPH2), the rate-limiting enzyme of serotonin (5-HT) synthesis in the brain, in children and adolescents with ADHD. We analyzed three single nucleotide polymorphisms (SNPs) in and downstream of the transcriptional control region of the TPH2 gene in 103 families with 225 affected children. Allelic association in families with more than one affected child was assessed using the pedigree disequilibrium test. Preferential transmissions were detected for the two SNPs in TPH2's regulatory region (rs4570625, P=0.049; rs11178997, P=0.034), but not for the third SNP in intron 2 (rs4565946, P=0.3517). Haplotype analysis revealed a strong trend of association between the regulatory region SNPs (rs4570625, rs11178997) and ADHD (P=0.064). Our results link potentially functional TPH2 variations to the pathophysiology of ADHD, and further support the relevance of 5-HT in disorders related to altered motor activity and cognitive processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Text revision. APA Press: Washington, DC, 2000.

  2. Faraone SV, Doyle AE . The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolsc Psychiatr Clin N Am 2001; 10: 2999–2316, viii–ix.

    Google Scholar 

  3. Spencer TJ, Biederman J, Wilens TE, Faraone SV . Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63 (Suppl 12): 3–9.

    PubMed  Google Scholar 

  4. Smalley SL . Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 1997; 60: 1267–1282.

    Article  Google Scholar 

  5. Heiser P, Friedel S, Dempfle A, Konrad K, Smidt J, Grabarkiewicz J et al. Molecular genetic aspects of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2004; 28: 625–641.

    Article  CAS  Google Scholar 

  6. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K . Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2000; 12: 107–110.

    Article  Google Scholar 

  7. Giros B, Jaber M, Jones S, Wightman RM, Caron M . Hyperlocomotion and differences to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612.

    Article  CAS  Google Scholar 

  8. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG . Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 1999; 283: 397–401.

    Article  CAS  Google Scholar 

  9. Coleman M . Serotonin concentrations in whole blood of hyperactive children. J Pediatr 1971; 78: 985–990.

    Article  CAS  Google Scholar 

  10. Bhagavan HN, Coleman M, Coursin DB . The effect of pyridoxine hydrochloride on blood serotonin and pyridoxal phosphate contents in hyperactive children. Pediatrics 1975; 55: 437–441.

    CAS  PubMed  Google Scholar 

  11. Spivak B, Vered Y, Yoran-Hegesh R, Averbuch E, Mester R, Graf E et al. Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity disorder. Acta Psychiatr Scand 1999; 4: 300–304.

    Article  Google Scholar 

  12. Lesch KP, Merschdorf U . Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law 2000; 18: 581–604.

    Article  CAS  Google Scholar 

  13. Lesch KP, Zeng Y, Reif A, Gutknecht L . Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 2003; 480: 185–204.

    Article  CAS  Google Scholar 

  14. Newman TK, Syagailo Y, Barr CS, Wendland J, Champoux M, Grässle M et al. Monoamine oxidase A gene promoter polymorphism and infant rearing experience interact to influence aggression and injuries in rhesus monkeys. Biol Psychiatry 2005; 57: 167–172.

    Article  CAS  Google Scholar 

  15. Retz W, Thome J, Blocher D, Baader M, Rösler M . Association of attention deficit hyperactivity disorder-related psychopathology and personality traits with the serotonin transporter promoter region polymorphism. Neurosci Lett 2002; 319: 133–136.

    Article  CAS  Google Scholar 

  16. Bobb AJ, Castellanos FX, Addington AM, Rapoport JL . Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 109–125.

    Google Scholar 

  17. Brunner D, Hen R . Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Ann NY Acad Sci 1997; 836: 81–105.

    Article  CAS  Google Scholar 

  18. Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N et al. Serotonergic system and attention-deficit/hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT1b receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 2002; 7: 718–725.

    Article  CAS  Google Scholar 

  19. Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 98–102.

    Article  CAS  Google Scholar 

  20. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  Google Scholar 

  21. Shelton TL, Barkley RA, Crosswait C, Moorehouse M, Fletcher K, Barrett S et al. Multimethod psychoeducational intervention for preschool children with disruptive behavior: two-year post-treatment follow-up. J Abnorm Child Psychol 2000; 28: 253–266.

    Article  CAS  Google Scholar 

  22. Barkley RA, Shelton TL, Crosswait C, Moorehouse M, Fletcher K, Barrett S et al. Preschool children with disruptive behavior: three-year outcome as a function of adaptive disability. Dev Psychopathol 2002; 14: 45–67.

    Article  Google Scholar 

  23. Murphy KR, Barkley RA . Parents of children with attention-deficit/hyperactivity disorder: psychological and attentional impairment. Am J Orthopsychiatry 1996; 66: 93–102.

    Article  Google Scholar 

  24. Wechsler D . Examiner's Manual: Wechsler Intelligence Scale for Children, 3rd edn. Psychological Corporation: New York, 1991.

    Google Scholar 

  25. Tewes U, Rossmann R, Schallberger U . Der Hamburg-Wechsler-Intelligenztest fuer Kinder (HAWIK-III). Huber-Verlag: Bern, 1999.

    Google Scholar 

  26. Kaufman AS, Kaufman NL . K-ABC: Kaufman—Assessment Battery for Children. American Guidance Service: Circle Pines, MN, 1983.

    Google Scholar 

  27. Melchers P, Preuss U . K-ABC: Kaufman—Assessment Battery for Children. Deutsche Bearbeitung. Swets & Zeitlinger: Amsterdam, 1994.

    Google Scholar 

  28. Weiss RH . Grundintelligenztest Skala 2 (CFT 20) mit Wortschatztest (WS) und Zahlenfolgentest (ZF). 4., ueberarbeitete Auflage. Westermann: Braunschweig, 1998.

    Google Scholar 

  29. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children—Present and Lifetime Version (K-SADS-PL-D): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988.

    Article  CAS  Google Scholar 

  30. Delmo C, Weiffenbach O, Gabriel M, Poustka F . 3. Auflage der deutschen Forschungsversion des K-SADS-PL-D, erweitert um ICD-10-Diagnostik Translation and adaptation: Doepfner M and Lehmkuhl G (1998) Diagnostik-System fuer psychische Stoerungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV. Bern: Huber Verlag, 2000.

    Google Scholar 

  31. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd edn. (rev ed.), APA Press: Washington, DC, 1987.

  32. World Health Organization. The ICD-10 Classification of Mental and Behavioral Disorders: Diagnostic Criteria for Research. WHO: Geneva, 1993.

  33. Achenbach TM, Edelbrock CS . Psychopathology of childhood. Annu Rev Psychol 1984; 35: 227–256.

    Article  CAS  Google Scholar 

  34. Achenbach TM . Empirically Based Taxonomy: How to Use Syndromes and Profile Types Derived from the CBCL from 4 to 18, TRF, and WSR. University of Vermont Department of Psychiatry: Burlington, 1993.

    Google Scholar 

  35. Remschmidt H, Walter R . Psychological symptoms in school children. An epidemiologic study. Z Kinder Jugendpsychiatr 1990; 18: 121–132.

    CAS  PubMed  Google Scholar 

  36. Doepfner M, Lehmkuhl G . Diagnostik-System für psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV. Huber: Bern, 1998.

    Google Scholar 

  37. De Luca V, Voineskos D, Wong GW, Shinkai T, Rothe C, Strauss J et al. Promoter polymorphism of second tryptophan hydroxylase isoform (TPH2) in schizophrenia and suicidality. Psychiatry Res 2005; 134: 195–198.

    Article  CAS  Google Scholar 

  38. Kennedy MA, Miller AL, Rogers G, Luty S, Mulder R, Joyce P . Polymorphic variants and association analysis of TPH2, brain tryptophane hydroxylase. Neuropsychiatric Genet 2003; 122B: 69.

    Google Scholar 

  39. Mössner R, Walitza S, Geller F, Scherag A, Gutknecht L, Bogusch L et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive-compulsive disorder. Int J Neuropsychopharmacol 2005, in press.

  40. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45: 11–16.

    Article  CAS  Google Scholar 

  41. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  Google Scholar 

  42. Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE . Mega2, a data-handling program for facilitating genetic linkage and association analyses. Am J Hum Genet 1999; 65: A436.

    Google Scholar 

  43. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  Google Scholar 

  44. Martin ER, Bass MP, Kaplan NL . Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 2001; 68: 1065–1067.

    Article  CAS  Google Scholar 

  45. Boehringer S, Epplen JTM . Genetic association studies of bronchial asthma—a need for Bonferroni correction? Hum Genet 2000; 107: 197.

    Article  CAS  Google Scholar 

  46. Nyholt DR . Genetic case–control association studies—correcting for multiple testing. Hum Genet 2001; 109: 564–567.

    Article  CAS  Google Scholar 

  47. Knapp M, Becker T . Family-based association analysis with tightly linked markers. Hum Hered 2003; 56: 2–9.

    Article  Google Scholar 

  48. Becker T, Knapp M . Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004; 27: 21–32.

    Article  Google Scholar 

  49. Zhao H, Zhang S, Merikangas KR, Trixler M, Wildenauer DB, Sun F et al. Transmission/disequilibrium tests using multiple tightly linked markers. Am J Hum Genet 2000; 67: 936–946.

    Article  CAS  Google Scholar 

  50. Becker T, Knapp M . A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 2004; 75: 561–570.

    Article  CAS  Google Scholar 

  51. Swanson J, Posner M, Fusella J, Wasdell M, Sommer T, Fan J . Genes and attention deficit hyperactivity disorder. Curr Psychiatry Rep 2001; 3: 92–100.

    Article  CAS  Google Scholar 

  52. Lesch KP, Gutknecht L . Focus on the 5-HT1A receptor: emerging role of a gene regulatory variant in psychopathology and pharmacogenetics. Int J Neuropsychopharmacol 2004; 7: 381–385.

    Article  CAS  Google Scholar 

  53. Irizarry KJ, Galbraith SJ . Complex disorders reloaded: causality, action, reaction, cause and effect. Mol Psychiatry 2004; 9: 431–432.

    Article  CAS  Google Scholar 

  54. Evers EA, Tillie DE, van der Veen FM, Lieben CK, Jolles J, Deutz NE et al. Effects of a novel method of acute tryptophan depletion on plasma tryptophan and cognitive performance in healthy volunteers. Psychopharmacology (Berl) 2005; 178: 92–99.

    Article  CAS  Google Scholar 

  55. Hayward G, Goodwin GM, Cowen PJ, Harmer CJ . Low-dose tryptophan depletion in recovered depressed patients induces changes in cognitive processing without depressive symptoms. Biol Psychiatr 2005; 57: 517–524.

    Article  CAS  Google Scholar 

  56. Moreno FA, Gelenberg AJ, Heninger GR, Potter RL, McKnight KM, Allen J et al. Tryptophan depletion and depressive vulnerability. Biol Psychiatry 1999; 46: 498–505.

    Article  CAS  Google Scholar 

  57. Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 2004; 61: 765–773.

    Article  CAS  Google Scholar 

  58. Puig MV, Celada P, Artigas F . Serotonergic control of prefrontal cortex. Rev Neurol 2004; 39: 539–547.

    CAS  PubMed  Google Scholar 

  59. Barkley RA, Edwards G, Laneri M, Fletcher K, Metevia L . Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). J Abnorm Child Psychol 2001; 29: 541–556.

    Article  CAS  Google Scholar 

  60. Castellanos FX, Tannock R . Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617–628.

    Article  CAS  Google Scholar 

  61. Kuntsi J, Oosterlaan J, Stevenson J . Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 2001; 42: 199–210.

    Article  CAS  Google Scholar 

  62. Retz W, Retz-Junginger P, Supprian T, Thome J, Rosler M . Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav Sci Law 2004; 22: 415–2560.

    Article  Google Scholar 

  63. Zill P, Baghai TC, Zwanzger P, Schüle C, Eser D, Rupprecht R et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidece for association with major depression. Mol Psychiatry 2004; 9: 1030–1036.

    Article  CAS  Google Scholar 

  64. Harvey M, Shink E, Tremblay M, Gagné B, Raymond C, Labbé M et al. Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry 2004; 9: 980–981.

    Article  CAS  Google Scholar 

  65. Breidenthal SE, White DJ, Glatt CE . Identification of genetic variants in the neuronal form of tryptophan hydroxylase (TPH2). Psychiatr Genet 2004; 14: 69–72.

    Article  Google Scholar 

  66. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  Google Scholar 

  67. Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL et al. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet 2002; 70: 1183–1196.

    Article  CAS  Google Scholar 

  68. Smalley SL, McGough JJ, Del'Homme M, NewDelman J, Gordon E, Kim T et al. Familial clustering of symptoms and disruptive behaviors in multiplex families with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2000; 39: 1135–1143.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all probands for their participation. We thank C Jambor and N Steigerwald for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 581; KFO 125/1-1; SCHA 542/10-2), the Fritz Thyssen Stiftung, the European Commission (NEWMOOD LSHM-CT-2003–503474), the Bundesministerium für Bildung und Forschung (German National Genome Net 01GS0118, 01GR0460) and the Interdisziplinäres Zentrum für Klinische Forschung, Würzburg (N-3; 01KS9603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Walitza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walitza, S., Renner, T., Dempfle, A. et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol Psychiatry 10, 1126–1132 (2005). https://doi.org/10.1038/sj.mp.4001734

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001734

Keywords

This article is cited by

Search

Quick links