Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A dopamine transporter mutation associated with bipolar affective disorder causes inhibition of transporter cell surface expression

A Corrigendum to this article was published on 27 June 2006

Abstract

The dopamine transporter (DAT) plays a crucial role in dopaminergic neurotransmission as it clears the extracellular space of dopamine (DA) and thus controls the concentration of active neurotransmitter. Genetic association studies have reported a variable number of tandem repeat polymorphisms in the 3′-noncoding region of the DAT gene implicating this protein in the development of various psychiatric disorders. In a sample of bipolar patients, two rare missense substitutions (A559V and E602G) have been identified, one of which (E602G) was inherited by the patient from her affected father. None of these mutations had been identified in any control subjects of this survey. Using a heterologous cellular expression system, we have analysed possible consequences of these mutations on functional properties of the encoded DAT protein. DA transport measurements and antagonist binding revealed that the A559V mutant protein is fully functional, whereas the E602G mutant is not. Further analyses by confocal microscopy showed that the E602G protein is transcribed and translated but not delivered to the cell surface. Taken together, our results suggest that this missense mutation has functional consequences thus supporting the need to screen larger samples of patients and their relatives for this rare but bipolar disorder-associated mutation in the DAT gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Storch A, Ludolph AC, Schwarz J . Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 2004; 111: 1267–1286.

    Article  CAS  PubMed  Google Scholar 

  2. Zahniser NR, Sorkin A . Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 2004; 47(Suppl 1): 80–91.

    Article  CAS  PubMed  Google Scholar 

  3. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612.

    Article  CAS  PubMed  Google Scholar 

  4. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG . Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 1998; 95: 4029–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 1992; 42: 383–390.

    PubMed  CAS  Google Scholar 

  6. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  7. Vandenbergh DJ, Persico AM, Uhl GR . A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Brain Res Mol Brain Res 1992; 15: 161–166.

    Article  CAS  PubMed  Google Scholar 

  8. Byerley W, Hoff M, Holik J, Caron MG, Giros B . VNTR polymorphism for the human dopamine transporter gene (DAT1). Hum Mol Genet 1993; 2: 335.

    Article  CAS  PubMed  Google Scholar 

  9. Sano A, Kondoh K, Kakimoto Y, Kondo I . A 40-nucleotide repeat polymorphism in the human dopamine transporter gene. Hum Genet 1993; 91: 405–406.

    Article  CAS  PubMed  Google Scholar 

  10. Kawarai T, Kawakami H, Yamamura Y, Nakamura S . Structure and organization of the gene encoding human dopamine transporter. Gene 1997; 195: 11–18.

    Article  CAS  PubMed  Google Scholar 

  11. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S . The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001; 1: 152–156.

    Article  CAS  PubMed  Google Scholar 

  12. Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP . The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 2001; 79: 1033–1038.

    Article  CAS  PubMed  Google Scholar 

  13. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  14. Greenwood TA, Kelsoe JR . Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 2003; 82: 511–520.

    Article  CAS  PubMed  Google Scholar 

  15. Cook Jr EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M . Confirmation of association between attention deficit hyperactivity disorder and dopamine transporter polymorphism. Mol Psychiatry 1997; 2: 311–313.

    Article  CAS  PubMed  Google Scholar 

  17. Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtypes and severity. Am J Hum Genet 1998; 63: 1767–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry 1999; 4: 192–196.

    Article  CAS  PubMed  Google Scholar 

  19. Blum K, Braverman ER, Wu S, Cull JG, Chen TJ, Gill J et al. Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Mol Psychiatry 1997; 2: 239–246.

    Article  CAS  PubMed  Google Scholar 

  20. Waldman ID, Robinson BF, Feigon SA . Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity. Genet Epidemiol 1997; 14: 699–704.

    Article  CAS  PubMed  Google Scholar 

  21. Kelsoe JR, Dessa Sadovnick A, Kristbjarnarson H, Bergesch P, Mroczkowski-Parker Z, Drennan M et al. Possible locus for bipolar disorder near the dopamine transporter on chromosome 5. Am J Med Genet 1996; 67: 533–540.

    Article  CAS  PubMed  Google Scholar 

  22. Homer JP, Flodman PM, Spence MA . Bipolar disorder: dominant or recessive on chromosome 5? Genet Epidemiol 1997; 14: 647–651.

    Article  CAS  PubMed  Google Scholar 

  23. Grunhage F, Schulze TG, Muller DJ, Lanczik M, Franzek E, Albus M et al. Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Mol Psychiatry 2000; 5: 275–282.

    Article  CAS  PubMed  Google Scholar 

  24. Schloss P, Püschel A, Betz H . Neurotransmitter transporters: new members of known families. Curr Opin Cell Biol 1994; 6: 595–599.

    Article  CAS  PubMed  Google Scholar 

  25. Iversen L . Neurotransmitter transporters: fruitful targets for CNS drug discovery. Mol Psychiatry 2000; 5: 357–362. trvbz.

    Article  CAS  PubMed  Google Scholar 

  26. Reith MEA . In: Reith MEA (ed). Neurotransmitter Transporters. Structure, Function and Regulation, 2nd edn. Humana Press: Totowa, NJ, 2002.

    Book  Google Scholar 

  27. Schloss P, Betz H . Heterogeneity of antidepressant binding sites on the recombinant rat serotonin transporter SERT1. Biochemistry 1995; 34: 12590–12595.

    Article  CAS  PubMed  Google Scholar 

  28. Sur C, Betz H, Schloss P . Distinct effects of imipramine on 5-hydroxytryptamine uptake mediated by the recombinant rat serotonin transporter SERT1. J Neurochem 1998; 70: 2545–2553.

    Article  CAS  PubMed  Google Scholar 

  29. Horschitz S, Hummerich R, Schloss P . Functional coupling of serotonin and noradrenaline transporters. J Neurochem 2003; 86: 958–965.

    Article  CAS  PubMed  Google Scholar 

  30. Hummerich R, Reischl G, Ehrlichmann W, Machulla HJ, Heinz A, Schloss P . DASB—in vitro binding characteristics on human recombinant monoamine transporters with regard to its potential as positron emission tomography (PET) tracer. J Neurochem 2004; 90: 1218–1226.

    Article  CAS  PubMed  Google Scholar 

  31. Markwell MA, Haas SM, Bieber LL, Tolbert NE . A modification of the Lowry procedure to simplify protein determination in mebrane and lipoproteine samples. Ann Biochem 1978; 87: 206–210.

    Article  CAS  Google Scholar 

  32. Souery D, Lipp O, Mahieu B, Mendelbaum K, De Martelaer V, Van Broeckhoven C et al. Association study of bipolar disorder with candidate genes involved in catecholamine neurotransmission: DRD2, DRD3, DAT1, and TH genes. Am J Med Genet 1996; 67: 551–555.

    Article  CAS  PubMed  Google Scholar 

  33. Gomez-Casero E, Perez de Castro I, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J . No association between particular DRD3 and DAT gene polymorphisms and manic-depressive illness in a Spanish sample. Psychiatr Genet 1996; 6: 209–212.

    Article  CAS  PubMed  Google Scholar 

  34. Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 1996; 40: 7–13.

    Article  CAS  PubMed  Google Scholar 

  35. Bocchetta A, Piccardi MP, Palmas MA, Chillotti C, Oi A, Del Zompo M . Family-based association study between bipolar disorder and DRD2, DRD4, DAT, and SERT in Sardinia. Am J Med Genet 1999; 88: 522–526.

    Article  CAS  PubMed  Google Scholar 

  36. Kirov G, Jones I, McCandless F, Craddock N, Owen MJ . Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatry 1999; 4: 558–565.

    Article  CAS  PubMed  Google Scholar 

  37. Heiden A, Schussler P, Itzlinger U, Leisch F, Scharfetter J, Gebhardt C et al. Association studies of candidate genes in bipolar disorders. Neuropsychobiology 2000; 42: 18–21.

    Article  CAS  PubMed  Google Scholar 

  38. Georgieva L, Dimitrova A, Nikolov I, Koleva S, Tsvetkova R, Owen MJ et al. Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand 2002; 105: 396–399.

    Article  CAS  PubMed  Google Scholar 

  39. Lee FJ, Pristupa ZB, Ciliax BJ, Levey AI, Niznik HB . The dopamine transporter carboxyl-terminal tail. Truncation/substitution mutants selectively confer high affinity dopamine uptake while attenuating recognition of the ligand binding domain. J Biol Chem 1996; 271: 20885–20894.

    Article  CAS  PubMed  Google Scholar 

  40. Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD et al. Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 2003; 278: 2731–2739.

    Article  CAS  PubMed  Google Scholar 

  41. Bjerggaard C, Fog JU, Hastrup H, Madsen K, Loland CJ, Javitch JA et al. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions. J Neurosci 2004; 24: 7024–7036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miranda M, Sorkina T, Grammatopoulos TN, Zawada WM, Sorkin A . Multiple molecular determinants in the carboxyl terminus regulate dopamine transporter export from endoplasmic reticulum. J Biol Chem 2004; 279: 30760–30770.

    Article  CAS  PubMed  Google Scholar 

  43. Nishimura N, Balch WE . A di-acidic signal required for selective export from the endoplasmic reticulum. Science 1997; 277: 556–558.

    Article  CAS  PubMed  Google Scholar 

  44. Bannykh SI, Nishimura N, Balch WE . Getting into the Golgi. Trends Cell Biol 1998; 8: 21–25.

    Article  CAS  PubMed  Google Scholar 

  45. Barlowe C . Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol 2003; 13: 295–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SCHL353/4-2 to PS and SFB636 to MR and PS). We thank Helene Schamber for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Schloss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horschitz, S., Hummerich, R., Lau, T. et al. A dopamine transporter mutation associated with bipolar affective disorder causes inhibition of transporter cell surface expression. Mol Psychiatry 10, 1104–1109 (2005). https://doi.org/10.1038/sj.mp.4001730

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001730

Keywords

This article is cited by

Search

Quick links