Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Haplotypic association spanning the 22q11.21 genes COMT and ARVCF with schizophrenia

Abstract

Catechol-O-methyltransferase (COMT) has been implicated in schizophrenia by its function through its roles in monoamine neurotransmitter metabolism and its impact on prefrontal cognition, and also by its position through linkage scans and a strong cytogenetic association. Further support comes from association studies, especially family-based ones examining the COMT variant, Val108/158Met. We have studied eight markers spanning COMT and including portions of the two immediately adjacent genes, thioredoxin reductase 2 and armadillo repeat deleted in velocardiofacial syndrome (ARVCF), using association testing in 136 schizophrenia families. We found nominal evidence for association of illness to rs165849 (P=0.051) in ARVCF, and a stronger signal (global P=0.0019–0.0036) from three-marker haplotypes spanning the 3′ portions of COMT and ARVCF, including Val108/158Met with Val108/158 being the overtransmitted allele, consistent with previous studies. We also find Val108/158Met to be in linkage disequilibrium with the markers in ARVCF. These findings support previous association signals of schizophrenia to COMT markers, and suggest that ARVCF might contribute to this signal. ARVCF, a member of the catenin family, besides being a positional candidate, is also one due to its function, that is, its potential role in neurodevelopment, which is implicated in schizophrenia pathogenesis by several lines of evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanders AR, Gejman PV . Influential ideas and experimental progress in schizophrenia genetics research. JAMA 2001; 285: 2831–2833.

    Article  CAS  PubMed  Google Scholar 

  2. Axelrod J, Tomchick R . Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 1958; 233: 702–705.

    Article  CAS  PubMed  Google Scholar 

  3. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci 2002; 15: 246–256.

    Article  PubMed  Google Scholar 

  5. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI . Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 1998; 18: 2697–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karhunen T, Tilgmann C, Ulmanen I, Panula P . Catechol-O-methyltransferase (COMT) in rat brain: immunoelectron microscopic study with an antiserum against rat recombinant COMT protein. Neurosci Lett 1995; 187: 57–60.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 2003; 116: 127–137.

    Article  CAS  PubMed  Google Scholar 

  8. Maynard TM, Haskell GT, Peters AZ, Sikich L, Lieberman JA, LaMantia AS . A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proc Natl Acad Sci USA 2003; 100: 14433–14438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulmanen I, Lundstrom K . Cell-free synthesis of rat and human catechol O-methyltransferase. Insertion of the membrane-bound form into microsomal membranes in vitro. Eur J Biochem 1991; 202: 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  10. Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P . Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci USA 1991; 88: 1416–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lundstrom K, Salminen M, Jalanko A, Savolainen R, Ulmanen I . Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol 1991; 10: 181–189.

    Article  CAS  PubMed  Google Scholar 

  12. Ulmanen I, Peranen J, Tenhunen J, Tilgmann C, Karhunen T, Panula P et al. Expression and intracellular localization of catechol O-methyltransferase in transfected mammalian cells. Eur J Biochem 1997; 243: 452–459.

    Article  CAS  PubMed  Google Scholar 

  13. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I . Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 1994; 223: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  14. Roth JA . Membrane-bound catechol-O-methyltransferase: a reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. Rev Physiol Biochem Pharmacol 1992; 120: 1–29.

    CAS  PubMed  Google Scholar 

  15. Mannisto PT, Kaakkola S . Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999; 51: 593–628.

    CAS  PubMed  Google Scholar 

  16. Reenila I, Mannisto PT . Catecholamine metabolism in the brain by membrane-bound and soluble catechol-O-methyltransferase (COMT) estimated by enzyme kinetic values. Med Hypotheses 2001; 57: 628–632.

    Article  CAS  PubMed  Google Scholar 

  17. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 1998; 54: 342–352.

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 1998; 273: 32776–32786.

    Article  CAS  PubMed  Google Scholar 

  19. Jonker JW, Schinkel AH . Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 2004; 308: 2–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lundstrom K, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Ulmanen I . Cloning, expression and structure of catechol-O-methyltransferase. Biochim Biophys Acta 1995; 1251: 1–10.

    Article  CAS  PubMed  Google Scholar 

  21. Xie T, Ho SL, Ramsden D . Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol 1999; 56: 31–38.

    Article  CAS  PubMed  Google Scholar 

  22. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 2000; 5: 77–84.

    Article  CAS  PubMed  Google Scholar 

  23. Fan JB, Chen WY, Tang JX, Li S, Gu NF, Feng GY et al. Family-based association studies of COMT gene polymorphisms and schizophrenia in the Chinese population. Mol Psychiatry 2002; 7: 446–447.

    Article  CAS  PubMed  Google Scholar 

  24. Norton N, Kirov G, Zammit S, Jones G, Jones S, Owen R et al. Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis. Am J Med Genet 2002; 114: 491–496.

    Article  PubMed  Google Scholar 

  25. Saito S, Iida A, Sekine A, Miura Y, Sakamoto T, Ogawa C et al. Identification of 197 genetic variations in six human methyltranferase genes in the Japanese population. J Hum Genet 2001; 46: 529–537.

    Article  CAS  PubMed  Google Scholar 

  26. DeMille MM, Kidd JR, Ruggeri V, Palmatier MA, Goldman D, Odunsi A et al. Population variation in linkage disequilibrium across the COMT gene considering promoter region and coding region variation. Hum Genet 2002; 111: 521–537.

    Article  CAS  PubMed  Google Scholar 

  27. Fahndrich E, Coper H, Christ W, Helmchen H, Muller-Oerlinghausen B, Pietzcker A . Erythrocyte COMT-activity in patients with affective disorders. Acta Psychiatr Scand 1980; 61: 427–437.

    Article  CAS  PubMed  Google Scholar 

  28. Floderus Y, Ross SB, Wetterberg L . Erythrocyte catechol-O-methyltransferase activity in a Swedish population. Clin Genet 1981; 19: 389–392.

    Article  CAS  PubMed  Google Scholar 

  29. Boudikova B, Szumlanski C, Maidak B, Weinshilboum R . Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther 1990; 48: 381–389.

    Article  CAS  PubMed  Google Scholar 

  30. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1. Am J Med Genet 1994; 54: 36–43.

    Article  CAS  PubMed  Google Scholar 

  32. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 1994; 54: 59–71.

    Article  CAS  PubMed  Google Scholar 

  33. Lasseter VK, Pulver AE, Wolyniec PS, Nestadt G, Meyers D, Karayiorgou M et al. Follow-up report of potential linkage for schizophrenia on chromosome 22q: Part 3. Am J Med Genet 1995; 60: 172–173.

    Article  CAS  PubMed  Google Scholar 

  34. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet 1996; 67: 40–45.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet 1998; 81: 364–376.

    Article  CAS  PubMed  Google Scholar 

  36. Stober G, Saar K, Ruschendorf F, Meyer J, Nurnberg G, Jatzke S et al. Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 2000; 67: 1201–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams NM, Norton N, Williams H, Ekholm B, Hamshere ML, Lindblom Y et al. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet 2003; 73: 1355–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  39. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edenberg HJ, Foroud T, Conneally PM, Sorbel JJ, Carr K, Crose C et al. Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22. Am J Med Genet 1997; 74: 238–246.

    Article  CAS  PubMed  Google Scholar 

  41. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Potash JB, Zandi PP, Willour VL, Lan TH, Huo Y, Avramopoulos D et al. Suggestive linkage to chromosomal regions 13q31 and 22q12 in families with psychotic bipolar disorder. Am J Psychiatry 2003; 160: 680–686.

    Article  PubMed  Google Scholar 

  44. Gasdaska PY, Berggren MM, Berry MJ, Powis G . Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett 1999; 442: 105–111.

    Article  CAS  PubMed  Google Scholar 

  45. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G . Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 1999; 261: 405–412.

    Article  CAS  PubMed  Google Scholar 

  46. Sirotkin H, O'Donnell H, DasGupta R, Halford S, St Jore B, Puech A et al. Identification of a new human catenin gene family member (ARVCF) from the region deleted in velo-cardio-facial syndrome. Genomics 1997; 41: 75–83.

    Article  CAS  PubMed  Google Scholar 

  47. Shprintzen RJ . Velo-cardio-facial syndrome: a distinctive behavioral phenotype. Ment Retard Dev Disabil Res Rev 2000; 6: 142–147.

    Article  CAS  PubMed  Google Scholar 

  48. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW . Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 1992; 42: 141–142.

    Article  CAS  PubMed  Google Scholar 

  49. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182: 476–478.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  51. Shaikh TH, Kurahashi H, Saitta SC, O'Hare AM, Hu P, Roe BA et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489–501.

    Article  CAS  PubMed  Google Scholar 

  52. Ivanov D, Kirov G, Norton N, Williams HJ, Williams NM, Nikolov I et al. Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. Molecular genetic study. Br J Psychiatry 2003; 183: 409–413.

    Article  CAS  PubMed  Google Scholar 

  53. Gottesman II . Schizophrenia Genesis: The Origins of Madness. WH Freeman & Co: New York, NY, 1990.

    Google Scholar 

  54. Murphy KC, Owen MJ . Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 2001; 179: 397–402.

    Article  CAS  PubMed  Google Scholar 

  55. Bassett AS, Chow EW, AbdelMalik P, Gheorghiu M, Husted J, Weksberg R . The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatry 2003; 160: 1580–1586.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34: 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  57. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  58. Weinshilboum RM, Otterness DM, Szumlanski CL . Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 1999; 39: 19–52.

    Article  CAS  PubMed  Google Scholar 

  59. Syvanen AC, Tilgmann C, Rinne J, Ulmanen I . Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and Parkinsonian patients in Finland. Pharmacogenetics 1997; 7: 65–71.

    Article  CAS  PubMed  Google Scholar 

  60. Vidgren J, Svensson LA, Liljas A . Crystal structure of catechol O-methyltransferase. Nature 1994; 368: 354–358.

    Article  CAS  PubMed  Google Scholar 

  61. Shield AJ, Thomae BA, Eckloff BW, Wieben ED, Weinshilboum RM . Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatry 2004; 9: 151–160.

    Article  CAS  PubMed  Google Scholar 

  62. Jeffery DR, Roth JA . Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex. J Neurochem 1984; 42: 826–832.

    Article  CAS  PubMed  Google Scholar 

  63. Grossman MH, Creveling CR, Rybczynski R, Braverman M, Isersky C, Breakefield XO . Soluble and particulate forms of rat catechol-O-methyltransferase distinguished by gel electrophoresis and immune fixation. J Neurochem 1985; 44: 421–432.

    Article  CAS  PubMed  Google Scholar 

  64. O'Donovan MC, Williams NM, Owen MJ . Recent advances in the genetics of schizophrenia. Hum Mol Genet 2003; 12 (Spec No. 2): R125–R133.

    Article  CAS  PubMed  Google Scholar 

  65. Dunham I, Collins J, Wadey R, Scambler P . Possible role for COMT in psychosis associated with velo-cardio-facial syndrome. Lancet 1992; 340: 1361–1362.

    Article  CAS  PubMed  Google Scholar 

  66. Murphy KC . Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359: 426–430.

    Article  PubMed  Google Scholar 

  67. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  69. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni X et al. Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002; 52: 701–707.

    Article  CAS  PubMed  Google Scholar 

  70. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  71. Nolan KA, Bilder RM, Lachman HM, Volavka J . Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. Am J Psychiatry 2004; 161: 359–361.

    Article  PubMed  Google Scholar 

  72. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  73. Kunugi H, Vallada HP, Sham PC, Hoda F, Arranz MJ, Li T et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet 1997; 7: 97–101.

    Article  CAS  PubMed  Google Scholar 

  74. Semwal P, Prasad S, Bhatia T, Deshpande SN, Wood J, Nimgaonkar VL et al. Family-based association studies of monoaminergic gene polymorphisms among North Indians with schizophrenia. Mol Psychiatry 2001; 6: 220–224.

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Wang X, O'Neill AF, Walsh D, Kendler KS . Variants in the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatry 2004 advance online publication.

  76. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsumoto M, Weickert CS, Beltaifa S, Kolachana B, Chen J, Hyde TM et al. Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology 2003; 28: 1521–1530.

    Article  CAS  PubMed  Google Scholar 

  78. Tunbridge E, Burnet PW, Sodhi MS, Harrison PJ . Catechol-O-methyltransferase (COMT) and proline dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Synapse 2004; 51: 112–118.

    Article  CAS  PubMed  Google Scholar 

  79. Chow EW, Bassett AS, Weksberg R . Velo-cardio-facial syndrome and psychotic disorders: implications for psychiatric genetics. Am J Med Genet 1994; 54: 107–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murray RM, Lewis SW . Is schizophrenia a neurodevelopmental disorder? BMJ (Clin Res Ed) 1987; 295: 681–682.

    Article  CAS  Google Scholar 

  81. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  82. Carlsson A . Does dopamine play a role in schizophrenia? Psychol Med 1977; 7: 583–597.

    Article  CAS  PubMed  Google Scholar 

  83. Snyder SH . The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 1976; 133: 197–202.

    Article  CAS  PubMed  Google Scholar 

  84. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE . Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 2003; 23: 2008–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carr DB, Sesack SR . Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 2000; 20: 3864–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carlsson A . A paradigm shift in brain research. Science 2001; 294: 1021–1024.

    Article  CAS  PubMed  Google Scholar 

  87. Weinberger DR, Berman KF, Illowsky BP . Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 1988; 45: 609–615.

    Article  CAS  PubMed  Google Scholar 

  88. Carlsson A . Neurocircuitries and neurotransmitter interactions in schizophrenia. Int Clin Psychopharmacol 1995; 10 (Suppl 3): 21–28.

    PubMed  Google Scholar 

  89. Grace AA . Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 2000; 31: 330–341.

    Article  CAS  PubMed  Google Scholar 

  90. Laruelle M . The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 2000; 31: 371–384.

    Article  CAS  PubMed  Google Scholar 

  91. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  92. Cloninger CR, Kaufmann CA, Faraone SV, Malaspina D, Svrakic DM, Harkavy-Friedman J et al. Genome-wide search for schizophrenia susceptibility loci: the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 275–281.

    Article  CAS  PubMed  Google Scholar 

  93. APA. Diagnostic and Statistical Manual of Mental Disorders, 3rd revised edn. American Psychiatric Association: Washington, DC, 1987.

  94. Chen X, Levine L, Kwok PY . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  96. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  97. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  98. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  PubMed  Google Scholar 

  100. Rabinowitz D, Laird N . A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50: 211–223.

    Article  CAS  PubMed  Google Scholar 

  101. Mowry BJ, Holmans PA, Pulver AE, Gejman PV, Riley B, Williams NM et al. Multicenter linkage study of schizophrenia loci on chromosome 22q. Mol Psychiatry 2004; 9: 784–795.

    Article  CAS  PubMed  Google Scholar 

  102. Karayiorgou M, Gogos JA, Galke BL, Wolyniec PS, Nestadt G, Antonarakis SE et al. Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility. Biol Psychiatry 1998; 43: 425–431.

    Article  CAS  PubMed  Google Scholar 

  103. de Chaldee M, Laurent C, Thibaut F, Martinez M, Samolyk D, Petit M et al. Linkage disequilibrium on the COMT gene in French schizophrenics and controls. Am J Med Genet 1999; 88: 452–457.

    Article  CAS  PubMed  Google Scholar 

  104. Chen CH, Lee YR, Chung MY, Wei FC, Koong FJ, Shaw CK et al. Systematic mutation analysis of the catechol O-methyltransferase gene as a candidate gene for schizophrenia. Am J Psychiatry 1999; 156: 1273–1275.

    CAS  PubMed  Google Scholar 

  105. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231–238.

    Article  CAS  PubMed  Google Scholar 

  106. Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T . Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet 2002; 47: 605–610.

    Article  CAS  PubMed  Google Scholar 

  107. Freudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, Nothen MM . Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Res 2003; 13: 2271–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  109. Kaufmann U, Zuppinger C, Waibler Z, Rudiger M, Urbich C, Martin B et al. The armadillo repeat region targets ARVCF to cadherin-based cellular junctions. J Cell Sci 2000; 113 (Part 22): 4121–4135.

    Article  CAS  PubMed  Google Scholar 

  110. Mariner DJ, Wang J, Reynolds AB . ARVCF localizes to the nucleus and adherens junction and is mutually exclusive with p120(ctn) in E-cadherin complexes. J Cell Sci 2000; 113 (Part 8): 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  111. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 1994; 79: 791–803.

    Article  CAS  PubMed  Google Scholar 

  112. Krubitzer L, Kahn DM . Nature vs nurture revisited: an old idea with a new twist. Prog Neurobiol 2003; 70: 33–52.

    Article  PubMed  Google Scholar 

  113. Roberts GW . Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 1990; 13: 207–211.

    Article  CAS  PubMed  Google Scholar 

  114. Bloom FE . Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 1993; 50: 224–227.

    Article  CAS  PubMed  Google Scholar 

  115. Murray RM . Neurodevelopmental schizophrenia: the rediscovery of dementia praecox. Br J Psychiatry Suppl 1994; 6–12.

Download references

Acknowledgements

We thank the patients and families for their participation. We thank DF Levinson (University of Pennsylvania School of Medicine, Philadelphia, PA, USA) for providing the age of onset information for the NIMH families. Regarding the National Institute of Mental Health (NIMH) Schizophrenia Genetics Initiative families, data and biomaterials were collected in three projects. From 1991 to 1997, the Principal Investigators and Coinvestigators were: Harvard University, Boston, MA, USA (Grant U01 MH46318) (MT Tsuang, S Faraone, and J Pepple); Washington University, St Louis, MO, USA (Grant U01 MH46276) (CR Cloninger, T Reich, and D Svrakic); and Columbia University, New York, NY, USA (Grant U01 MH46289) (C Kaufmann, D Malaspina, and J Harkavy Friedman). This work was supported by NIMH Grant R01 MH62276 to DF Levinson (ARS, SGS, DBW, PVG), by a Research Career Development Award (ARS) at the Evanston Northwestern Healthcare Research Institute, Evanston, IL, USA, and by a Howard Hughes Medical Institute Undergraduate Summer Research Fellowship (IR) at the University of Chicago, Chicago, IL, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Sanders.

Additional information

Supplementary information accompanies the paper on Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, A., Rusu, I., Duan, J. et al. Haplotypic association spanning the 22q11.21 genes COMT and ARVCF with schizophrenia. Mol Psychiatry 10, 353–365 (2005). https://doi.org/10.1038/sj.mp.4001586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001586

Keywords

This article is cited by

Search

Quick links