Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Replication of 1q42 linkage in Finnish schizophrenia pedigrees

Abstract

Chromosome 1q has been implicated in the etiology of schizophrenia in several independent studies. However, the peak linkage findings have been dispersed over a large chromosomal region, with negative findings in this region also being reported. Our group has previously observed linkage on chromosome 1q42, maximizing within the DISC1 gene, which has also been implied in the etiology of schizophrenia based on functional studies. In the study presented here, we genotyped 300 polymorphic markers on chromosome 1 using a study sample of 70 families with multiple individuals affected with schizophrenia or related conditions, independent of the study samples in our previous reports. We again found evidence for linkage on 1q42 maximizing within the DISC1 gene (rs1000731, lod=2.70). Further, a haplotype containing the most strongly linked markers showed some evidence of association with the disease. This replicates the previous linkage finding in the same region and constitutes supportive evidence for a susceptibility gene in this region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Torrey EF . Prevalence studies in schizophrenia. Br J Psychiatry 1987; 150: 598–608.

    Article  CAS  PubMed  Google Scholar 

  2. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M . The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 1998; 55: 67–74.

    CAS  PubMed  Google Scholar 

  3. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  6. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Portcous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  8. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  10. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levinson DF, Holmans PA, Laurent C, Riley B, Pulver AE, Gejman PV et al. No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. Science 2002; 296: 739–741.

    Article  CAS  PubMed  Google Scholar 

  13. Nevanlinna HR . The Finnish population structure. A genetic and genealogical study. Hereditas 1972; 71: 195–236.

    Article  CAS  PubMed  Google Scholar 

  14. Weeks DE, Lathrop GM . Polygenic disease: methods for mapping complex disease traits. Trends Genet 1995; 11: 513–519.

    Article  CAS  PubMed  Google Scholar 

  15. Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M . Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 2001; 69: 936–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goring HH, Terwilliger JD, Blangero J . Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69: 1357–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macgregor S, Visscher PM, Knott S, Porteous D, Muir W, Millar K et al. Is schizophrenia linked to chromosome 1q? Science 2002; 298: 2277 (author reply 2277).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lichtermann D, Hovatta I, Terwilliger JD, Peltonen L, Lonnqvist J . Concordance for sex and the pseudoautosomal gene hypothesis revisited: no evidence of increased sex concordance in a nationwide Finnish sample of siblings with paternally derived schizophrenia. Am J Psychiatry 1998; 155: 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  19. Lathrop GM, Lalouel JM, Julier C, Ott J . Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 1984; 81: 3443–3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hiekkalinna T, Peltonen L, Terwilliger JD . MULTIDISEQ: Computer software for multipoint linkage analysis of complex traits allowing for marker–marker LD (linkage disequilibrium). Am J Hum Genet 2003; 73: 1926.

    Google Scholar 

  22. Schäffer A Personal communication.

  23. Clayton D . A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    CAS  PubMed  Google Scholar 

  25. Ott J . Linkage probability and its approximate confidence interval under possible heterogeneity. Genet Epidemiol Suppl 1986; 1: 251–257.

    Article  CAS  PubMed  Google Scholar 

  26. Goring HH, Terwilliger JD . Linkage analysis in the presence of errors IV: joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000; 66: 1310–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin ER, Bass MP, Hauser ER, Kaplan NL . Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003; 73: 1016–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999; 65: 876–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajarvi R et al. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998; 3: 452–457.

    Article  CAS  PubMed  Google Scholar 

  30. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF . Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003; 8: 445–452.

    Article  CAS  PubMed  Google Scholar 

  31. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  32. Morris JA, Kandpal G, Ma L, Austin CP . DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    Article  CAS  PubMed  Google Scholar 

  33. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  34. Millar JK, Christie S, Porteous DJ . Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun 2003; 311: 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  35. Ma L, Liu Y, Ky B, Shughrue PJ, Austin CP, Morris JA et al. Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics 2002; 80: 662–672.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor MS, Devon RS, Millar JK, Porteous DJ . Evolutionary constraints on the Disrupted in Schizophrenia locus. Genomics 2003; 81: 67–77.

    Article  CAS  PubMed  Google Scholar 

  37. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ . DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 2003; 14: 951–954.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joseph D Terwilliger for statistical assistance and comments on the manuscript. This study was supported financially by Millennium Pharmaceuticals, Wyeth Research, and Finska Läkaresällskapet. LP is the Gordon and Virginia Mac Donald Distinguished Chair in Human Genetics at the David Geffen School of Medicine at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ekelund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekelund, J., Hennah, W., Hiekkalinna, T. et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry 9, 1037–1041 (2004). https://doi.org/10.1038/sj.mp.4001536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001536

Keywords

This article is cited by

Search

Quick links