Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Erythropoietin: a candidate compound for neuroprotection in schizophrenia

Abstract

Erythropoietin (EPO) is a candidate compound for neuroprotection in human brain disease capable of combating a spectrum of pathophysiological processes operational during the progression of schizophrenic psychosis. The purpose of the present study was to prepare the ground for its application in a first neuroprotective add-on strategy in schizophrenia, aiming at improvement of cognitive brain function as well as prevention/slowing of degenerative processes. Using rodent studies, primary hippocampal neurons in culture, immunohistochemical analysis of human post-mortem brain tissue and nuclear imaging technology in man, we demonstrate that: (1) peripherally applied recombinant human (rh) EPO penetrates into the brain efficiently both in rat and humans, (2) rhEPO is enriched intracranially in healthy men and more distinctly in schizophrenic patients, (3) EPO receptors are densely expressed in hippocampus and cortex of schizophrenic subjects but distinctly less in controls, (4) rhEPO attenuates the haloperidol-induced neuronal death in vitro, and (4) peripherally administered rhEPO enhances cognitive functioning in mice in the context of an aversion task involving cortical and subcortical pathways presumably affected in schizophrenia. These observations, together with the known safety of rhEPO, render it an interesting compound for neuroprotective add-on strategies in schizophrenia and other human diseases characterized by a progressive decline in cognitive performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Carlsson A . The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; 1: 179–186.

    Article  CAS  Google Scholar 

  2. Andreasen NC, Olsen S . Negative v positive schizophrenia. Definition and validation. Arch Gen Psychiatry 1982; 39: 789–794.

    Article  CAS  Google Scholar 

  3. Kremen WS, Seidman LJ, Faraone SV, Tsuang MT . Intelligence quotient and neuropsychological profiles in patients with schizophrenia and in normal volunteers. Biol Psychiatry 2001; 50: 453–462.

    Article  CAS  Google Scholar 

  4. Haefner H, Hambrecht M, Loffler W, Munk-Jorgensen P, Riecher-Rossler A . Is schizophrenia a disorder of all ages? A comparison of first episodes and early course across the life-cycle. Psychol Med 1998; 28: 351–365.

    Article  Google Scholar 

  5. Lieberman JA . Is schizophrenia a neurodegenerative disorder. A clinical and neurobiological perspective. Biol Psychiatry 1999; 46: 729–739.

    Article  CAS  Google Scholar 

  6. Kraepelin E . In: Robertson GM (ed). Dementia Praecox and Paraphrenia. E&S Livingstone: Edinburgh, Scotland, 1919 (Endogenous dementias. In: Barclay RM (transl). Text Book of Psychiatry, Vol iii, Part ii, 8th edn. Chicago Medical Book Company: Chicago, 1919 (in German) (Translation of Chapter IX ‘Die endogenen Verblödungen’ from 1913a in English)).

    Google Scholar 

  7. Henn FA, Braus DF . Structural neuroimaging in schizophrenia. An integrative view of neuromorphology. Eur Arch Psychiatry Clin Neurosci 1999; 249: 48–56.

    Article  Google Scholar 

  8. Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B et al. Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 2000; 157: 34–39.

    Article  CAS  Google Scholar 

  9. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 2001; 49: 487–499.

    Article  CAS  Google Scholar 

  10. Thomson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nickolson R et al. From the cover: mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  Google Scholar 

  11. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C . Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 2003; 23: 3295–3301.

    Article  CAS  Google Scholar 

  12. Cannon TD, Thompson PM, van Erb TG, Toga AW, Poutanen VP, Huttunen M et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3228–3233.

    Article  CAS  Google Scholar 

  13. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  CAS  Google Scholar 

  14. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  Google Scholar 

  15. Ilia M, Beasley C, Meijer D, Kerwin R, Cotter D, Everall I et al. Expression of Oct-6, a POU III domain transcription factor in schizophrenia. Am J Psychiatry 2002; 159: 1174–1182.

    Article  Google Scholar 

  16. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RL et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002; 99: 4680–4685.

    Article  CAS  Google Scholar 

  17. Achte K, Jarho L, Kyykka T, Vesterinen E . Paranoid disorders following war brain damage. Preliminary report. Psychopathology 1991; 24: 309–315.

    Article  CAS  Google Scholar 

  18. Malaspina D, Goetz RR, Friedman JH, Kaufmann CA, Faraone SV, Tsuang M et al. Traumatic brain injury and schizophrenia in members of schizophrenia and bipolar disorder pedigrees. Am J Psychiatry 2001; 158: 440–446.

    Article  CAS  Google Scholar 

  19. McAllister TW . Traumatic brain injury and psychosis: what is the connection? Semin Clin Neuropsychiatry 1998; 3: 211–223.

    CAS  PubMed  Google Scholar 

  20. Marenco S, Weinberger DR . The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527.

    Article  CAS  Google Scholar 

  21. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  Google Scholar 

  22. Velakoulis D, Wood SJ, McGorry PD, Pantelis C . Evidence for progression of brain structural abnormalities in schizophrenia: beyond the neurodevelopmental model. Aust NZ J Psychiatry (2000); 34(Suppl): S113–S126.

    Article  Google Scholar 

  23. Lipska BK, Weinberger DR . To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 2000; 23: 223–239.

    Article  CAS  Google Scholar 

  24. Conti LH, Palmer AA, Vanella JJ, Printz MP . Latent inhibition and conditioning in rat strains which show differential prepulse inhibition. Behav Genet 2001; 31: 325–333.

    Article  CAS  Google Scholar 

  25. Ellenbroek BA, Budde S, Cools AR . Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 1996; 75: 535–542.

    Article  CAS  Google Scholar 

  26. Turgeon SM, Kegel G, Davis MM . Electrolytic lesions of the medial septum enhance latent inhibition in a conditioned taste aversion paradigm. Brain Res 2001; 890: 333–337.

    Article  CAS  Google Scholar 

  27. Weiner I . The ‘two-headed’ latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 2003; 168, online DOI 10.1007.

  28. Fenu S, Bassareo V, Di Chiara G . A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J Neurosci 2001; 21: 6897–6904.

    Article  CAS  Google Scholar 

  29. Ehrenreich H, Sirén A-L . Special issue-editorial: neuroprotection—what does it mean—what means do we have? Eur Arch Psychiatry Clin Neurosci 2001; 251: 149–151.

    Article  CAS  Google Scholar 

  30. Sirén A-L, Ehrenreich H . Erythropoietin—a novel concept of neuroprotection. Eur Arch Psychiatry Clin Neurosci 2001; 251: 179–184.

    Article  Google Scholar 

  31. Sirén A-L, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001; 98: 4044–4049.

    Article  Google Scholar 

  32. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 1998; 95: 4635–4640.

    Article  CAS  Google Scholar 

  33. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002; 8: 495–505.

    Article  CAS  Google Scholar 

  34. Jelkmann W . Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr Pharm Biotechnol 2000; 1: 11–31.

    Article  CAS  Google Scholar 

  35. Frankmann SP . A technique for repeated sampling of CSF from the anesthetized rat. Physiol Behav 1986; 37: 489–493.

    Article  CAS  Google Scholar 

  36. Brewer GJ . Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997; 71: 143–155.

    Article  CAS  Google Scholar 

  37. Lewczuk P, Hasselblatt M, Kamrowski-Kruck H, Heyer A, Unzicker C, Sirén AL et al. Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 2000; 11: 3485–3488.

    Article  CAS  Google Scholar 

  38. Kainz P, Schmiedlechner A, Strack HB . Specificity-enhanced hot-start PCR: addition of double-stranded DNA fragments adapted to the annealing temperature. Biotechniques 2000; 28: 278–282.

    Article  CAS  Google Scholar 

  39. Luig H, Eschner W, Bahre M, Voth E, Nolte G . An iterative strategy for determining the source distribution in single photon tomography using a rotating gamma camera (SPECT). Nuklearmedizin 1988; 27: 140–146.

    Article  CAS  Google Scholar 

  40. Ellis RE . The distribution of active bone marrow in the adult. Phys Med Biol 1961; 5: 255–258.

    Article  CAS  Google Scholar 

  41. Behl C, Rupprecht R, Skutella T, Holsboer F . Haloperidol-induced cell death—mechanism and protection with vitamin E in vitro. Neuroreport 1995; 7: 360–364.

    Article  CAS  Google Scholar 

  42. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  Google Scholar 

  43. Grace AA, Moore H, O’Donnell P . The modulation of corticoaccumbens transmission by limbic afferents and dopamine: a model for the pathophysiology of schizophrenia. Adv Pharmacol 1998; 42: 721–724.

    Article  CAS  Google Scholar 

  44. Nissenson AR . Epoetin and cognitive function. Am J Kidney Dis 1992; 20: 21–24.

    CAS  PubMed  Google Scholar 

  45. Bohlius J, Langensiepen S, Schwarzer G, Engert A . Epoetin in the treatment of malignant disease: a comprehensive meta-analysis. Blood 2002; 100: 3430A.

    Google Scholar 

  46. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 2002; 346: 469–475.

    Article  CAS  Google Scholar 

  47. Ehrenreich H, Sirén A-L . Benefits of recombinant human erythropoietin on cognitive function. Erythropoiesis 2001; 11: 35–39.

    Google Scholar 

  48. Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgard M et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 2003; 100: 6741–6746.

    Article  CAS  Google Scholar 

  49. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG . Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol 2000; 59: 419–425.

    Article  CAS  Google Scholar 

  50. Genc S, Akhisaroglu M, Kuralay F, Genc K . Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci Lett 2002; 321: 73–76.

    Article  CAS  Google Scholar 

  51. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C et al. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000; 97: 10526–10531.

    Article  CAS  Google Scholar 

  52. Kietzmann T, Knabe W, Schmidt-Kastner R . Hypoxia and hypoxia inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. Eur Arch Psychiatry Clin Neurosci 2001; 251: 170–178.

    Article  CAS  Google Scholar 

  53. Shingo T, Sorokan ST, Shimazaki T, Weiss S . Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 2001; 21: 9733–9743.

    Article  CAS  Google Scholar 

  54. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  Google Scholar 

  55. Harada S, Tachikawa H, Kawanishi Y . Glutathione S-transferase M1 gene deletion may be associated with susceptibility to certain forms of schizophrenia. Biochem Biophys Res Commun 2001; 281: 267–271.

    Article  CAS  Google Scholar 

  56. Coyle JT . The nagging question of the function of N-acetylaspartylglutamate. Neurobiol Dis 1997; 4: 231–238.

    Article  CAS  Google Scholar 

  57. Benes F, Coyle JT . Deja vu all over again. Biol Psychiatry 1998; 43: 781–782.

    Article  CAS  Google Scholar 

  58. Genc S, Kuralay F, Genc K, Akhisaroglu M, Fadiloglu S, Yorukoglu K et al. Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 2001; 298: 139–141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study has received research grant support from the Max-Planck Society, from Lundbeck and from Ortho Biotech Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Ehrenreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrenreich, H., Degner, D., Meller, J. et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 9, 42–54 (2004). https://doi.org/10.1038/sj.mp.4001442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001442

Keywords

This article is cited by

Search

Quick links