Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism-related proteins

Abstract

Using an automated PCR-based genomics approach, TOtal Gene expression Analysis (TOGA®), we have examined gene expression profiles of mouse striatum and frontal cortex in response to clozapine and haloperidol drug treatment. Of 17 315 mRNAs observed, TOGA® identified several groups of related molecules that were regulated by drug treatment. The expression of some genes encoding proteins involved in neurotransmission, signal transduction, oxidative stress, cell adhesion, apoptosis and proteolysis were altered in the brains of both clozapine- and haloperidol-treated mice as recognized by TOGA®. Most notable was the differential expression of those genes whose products are associated with lipid metabolism. These include apolipoprotein D (apoD), the mouse homolog of oxysterol-binding protein-like protein 8 (OSBPL8), a diacylglycerol receptor (n-chimerin), and lysophosphatidic acid (LPA) acyltransferase. Real-time PCR analysis confirmed increases in the RNA expression of apoD (1.6–2.2-fold) and OSBPL8 (1.7–2.6-fold), and decreases in the RNA expression of n-chimerin (1.5–2.2-fold) and LPA acyltransferase (1.5-fold) in response to haloperidol and/or clozapine treatment. Additional molecules related to calcium homeostasis and signal transduction, as well as four sequences of previously unidentified mRNAs, were also confirmed by real-time PCR to be regulated by drug treatment. While antipsychotic drugs may affect several metabolic pathways, lipid metabolism/signaling pathways may be of particular importance in the mechanisms of antipsychotic drug action and in the pathophysiology of psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lewis DA, Lieberman JA . Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334.

    Article  CAS  Google Scholar 

  2. Kerwin R, Taylor D . Antipsychotics—a review of the current status and clinical potential. CNS Drugs 1996; 6: 71–82.

    Article  CAS  Google Scholar 

  3. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC . et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96.

    Article  CAS  Google Scholar 

  4. Jann MW . Clozapine. Pharmacotherapy 1991; 11: 179–195.

    CAS  PubMed  Google Scholar 

  5. Carlsson A, Lindqvist M . Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963; 20: 140–144.

    Article  CAS  Google Scholar 

  6. Rossum V . The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmcodyn Ther 1966; 160: 492–494.

    Google Scholar 

  7. Seeman P, Lee T . Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 1975; 188: 1217–1219.

    Article  CAS  Google Scholar 

  8. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  Google Scholar 

  9. Meltzer HY, Nash JF . Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 1991; 43: 587–604.

    CAS  PubMed  Google Scholar 

  10. Schmidt CJ, Sorensen SM, Kehne JH, Carr AA, Palfreyman MG . The role of 5-HT2A receptors in antipsychotic activity. Life Sci 1995; 56: 2209–2222.

    Article  CAS  Google Scholar 

  11. Fibiger HC . Neuroanatomical targets of neuroleptic drugs as revealed by fos immunochemistry. J Clin Psychiatry 1994; 55: 33–36.

    PubMed  Google Scholar 

  12. Hughes P, Dragunow M . Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 1995; 47: 133–178.

    CAS  PubMed  Google Scholar 

  13. MacGibbon GA, Lawlor PA, Bravo R, Dragunow M . Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Mol Brain Res 1994; 23: 21–32.

    Article  CAS  Google Scholar 

  14. Miller J . Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J Neurochem 1990; 54: 1453–1455.

    Article  CAS  Google Scholar 

  15. Rogue P, Vincedon G . Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum. Brain Res Bull 1992; 29: 469–472.

    Article  CAS  Google Scholar 

  16. Marcus MM, Nomikos GG, Malmerfelt A, Zachrisson O, Lindefors N, Svensson TH . Effect of chronic antipsychotic drug treatment on preprosomatostatin and preprotachykinin A mRNA levels in the medial prefrontal cortex, the nucleus accumbens and the caudate putamen of the rat. Brain Res Mol Brain Res 1997; 45: 275–282.

    Article  CAS  Google Scholar 

  17. Merchant KM, Dobie DJ, Filloux FM, Totzke M, Aravagiri M, Dorsa DM . Effects of chronic haloperidol and clozapine treatment on neurotensin and c-fos mRNA in rat neostriatal subregions. J Pharmacol Exp Ther 1994; 271: 460–471.

    CAS  PubMed  Google Scholar 

  18. Angulo JA, Cadet JL, McEwen BS . Effect of typical and atypical neuroleptic treatment on protachykinin mRNA levels in the striatum of the rat. Neurosci Lett 1990; 113: 217–221.

    Article  CAS  Google Scholar 

  19. Petrack B, Emmett MR, Rao TS, Kim HS, Wood PL . Increases in rat striatal preproenkephalin mRNA levels following chronic treatment with the depot neuroleptic, haloperidol decanoate. Life Sci 1990; 46: 687–691.

    Article  CAS  Google Scholar 

  20. Langlois MC, Beaudry G, Zekki H, Rouillard C, Levesque D . Impact of antipsychotic drug administration on the expression of nuclear receptors in the neocortex and striatum of the rat brain. Neuroscience 2001; 106: 117–128.

    Article  CAS  Google Scholar 

  21. Eastwood SL, Heffernan J, Harrison PJ . Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol Psychiatry 1997; 2: 322–329.

    Article  CAS  Google Scholar 

  22. Schneider JS, Wade T, Lidsky TI . Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 mRNA in the striatum. Neuroreport 1998; 9: 133–136.

    Article  CAS  Google Scholar 

  23. Toyoda H, Takahata R, Inayama Y, Sakai J, Matsumura H, Yoneda H . et al. Effect of antipsychotic drugs on the gene expression of NMDA receptor subunits in rats. Neurochem Res 1997; 22: 249–252.

    Article  CAS  Google Scholar 

  24. Riva MA, Tascedda F, Lovati E, Racagni G . Regulation of NMDA receptor subunit messenger RNA levels in the rat brain following acute and chronic exposure to antipsychotic drugs. Brain Res Mol Brain Res 1997; 50: 136–142.

    Article  CAS  Google Scholar 

  25. Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ . Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 1995; 15: 2453–2461.

    Article  CAS  Google Scholar 

  26. Chong VZ, Young LT, Mishra RK . cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 2002; 82: 1533–1539.

    Article  CAS  Google Scholar 

  27. Kontkanen O, Toronen P, Lakso M, Wong G, Castren E . Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 2002; 83: 1043–1053.

    Article  CAS  Google Scholar 

  28. Ninan I, Kulkarni SK . Clozapine-induced cognitive dysfunction in mice. Methods Find Exp Clin Pharmacol 1996; 18: 367–372.

    CAS  PubMed  Google Scholar 

  29. Thomas PS . Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 1980; 77: 5201–5215.

    Article  CAS  Google Scholar 

  30. Sutcliffe JG, Foye PE, Erlander MG, Hilbush BS, Bodzin LJ, Durham JT . et al. TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc Natl Acad Sci USA 2000; 97: 1976–1981.

    Article  CAS  Google Scholar 

  31. de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE . et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 1996; 381: 242–245.

    Article  CAS  Google Scholar 

  32. Thomas EA, Danielson PE, Nelson PA, Pribyl TM, Hilbush BS, Hasel KW . et al. Clozapine increases apolipoprotein D expression in rodent brain: towards a mechanism for neuroleptic pharmacotherapy. J Neurochem 2001; 76: 789–796.

    Article  CAS  Google Scholar 

  33. Xu Y, Liu Y, Ridgway ND, McMaster CR . Novel members of the human oxysterol-binding protein family bind phospholipids and regulate vesicle transport. J Biol Chem 2001; 276: 18407–18414.

    Article  CAS  Google Scholar 

  34. Lehto M, Laitinen S, Chinetti G, Johansson M, Ehnholm C, Staels B . et al. The OSBP-related protein family in humans. J Lipid Res 2001; 42: 1203–1213.

    CAS  PubMed  Google Scholar 

  35. Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR . A family of 12 human genes containing oxysterol-binding domains. Genomics 2001; 78: 185–196.

    Article  CAS  Google Scholar 

  36. Patel SC, Asotra K, Patel YC, McConathy WJ, Patel RC, Suresh S . Astrocytes synthesize and secrete the lipophilic ligand carrier apolipoprotein D. Neuroreport 1995; 6: 653–657.

    Article  CAS  Google Scholar 

  37. Wang H, Kazanietz MG . Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain. J Biol Chem 2002; 277: 4541–4550.

    Article  CAS  Google Scholar 

  38. Kazanietz MG . Novel ‘nonkinase’ phorbol ester receptors: the C1 domain connection. Mol Pharmacol 2002; 61: 759–767.

    Article  CAS  Google Scholar 

  39. Shih GC, Kahler CM, Swartley JS, Rahman MM, Coleman J, Carlson RW . et al. Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol Microbiol 1999; 32: 942–952.

    Article  CAS  Google Scholar 

  40. Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W . et al. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 2002; 54: 265–269.

    Article  CAS  Google Scholar 

  41. Toman RE, Spiegel S . Lysophospholipid receptors in the nervous system. Neurochem Res 2002; 27: 619–627.

    Article  CAS  Google Scholar 

  42. Pangerl AM, Steudle A, Jaroni HW, Rufer R, Gattaz WF . Increased platelet membrane lysophosphatidylcholine in schizophrenia. Biol Psychiatry 1991; 30: 837–840.

    Article  CAS  Google Scholar 

  43. Li R, Wing LL, Wyatt RJ, Kirch DG . Effects of haloperidol, lithium, and valproate on phosphoinositide turnover in rat brain. Pharmacol Biochem Behav 1993; 46: 323–329.

    Article  CAS  Google Scholar 

  44. Li R, Wing LL, Shen Y, Wyatt RJ, Kirch DG, Chuang DM . Chronic haloperidol treatment attenuates receptor-mediated phosphoinositide turnover in rat brain slices. Neurosci Lett 1991; 129: 81–85.

    Article  CAS  Google Scholar 

  45. Hokin-Neaverson M . Actions of chlorpromazine, haloperidol and pimozide on lipid metabolism in guinea pig brain slices. Biochem Pharmacol 1980; 29: 2697–2700.

    Article  CAS  Google Scholar 

  46. Canton H, Verriele L, Millan MJ . Competitive antagonism of serotonin (5-HT)2C and 5-HT2A receptor-mediated phosphoinositide (PI) turnover by clozapine in the rat: a comparison to other antipsychotics. Neurosci Lett 1994; 181: 65–68.

    Article  CAS  Google Scholar 

  47. Ishigooka J, Shizu Y, Wakatabe H, Tanaka K, Miura S . Different effects of centrally acting drugs on rabbit platelet aggregation: with special reference to selective inhibitory effects of antipsychotics and antidepressants. Biol Psychiatry 1985; 20: 866–873.

    Article  CAS  Google Scholar 

  48. Horrobin DF, Glen AIM, Cantrill RC . Clozapine: elevation of membrane unsaturated lipid levels as a new mechanism of action. Schizophr Res 1997; 24: 214.

    Article  Google Scholar 

  49. Henderson DC . Clozapine: diabetes mellitus, weight gain, and lipid abnormalities. J Clin Psychiatry 2001; 62: 39–44.

    Article  CAS  Google Scholar 

  50. Sandeep TC, Walker BR . Pathophysiology of modulation of local glucocorticoid levels by 11beta-hydroxysteroid dehydrogenases. Trends Endocrinol Metab 2001; 12: 446–453.

    Article  CAS  Google Scholar 

  51. White PC . 11beta-hydroxysteroid dehydrogenase and its role in the syndrome of apparent mineralocorticoid excess. Am J Med Sci 2001; 322: 308–315.

    Article  CAS  Google Scholar 

  52. Newcomer JW, Haupt DW, Fucetola R, Melson AK, Schweiger JA, Cooper BP . et al. Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 2002; 59: 337–345.

    Article  CAS  Google Scholar 

  53. Lindenmayer JP, Czobor P, Volavka J, Citrome L, Sheitman B, McEvoy JP . et al. Changes in glucose and cholesterol levels in patients with schizophrenia treated with typical or atypical antipsychotics. Am J Psychiatry 2003; 160: 290–296.

    Article  Google Scholar 

  54. Horrobin DF . The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 1998; 30: 193–208.

    Article  CAS  Google Scholar 

  55. Horrobin DF, Bennet CN . New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot Essent Fatty acids 1999; 60: 141–167.

    Article  CAS  Google Scholar 

  56. Fenton WS, Hibbeln J, Knable M . Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47: 8–21.

    Article  CAS  Google Scholar 

  57. Koenig JI, Kirkpatrick B, Lee P . Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 2002; 27: 309–318.

    Article  CAS  Google Scholar 

  58. Garver DL . Neuroendocrine findings in the schizophrenias. Endocrinol Metab Clin N Am 1988; 17: 103–109.

    Article  CAS  Google Scholar 

  59. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD . et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  60. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A . Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 1998; 402: 353–371.

    Article  CAS  Google Scholar 

  61. Kennedy H, Dehay C . Cortical specification of mice and men. Cereb Cortex 1993; 3: 171–186.

    Article  CAS  Google Scholar 

  62. Berger B, Gaspar P, Verney C . Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 1991; 14: 21–27.

    Article  CAS  Google Scholar 

  63. Cragg SJ, Hille CJ, Greenfield SA . Functional domains in dorsal striatum of the nonhuman primate are defined by the dynamic behavior of dopamine. J Neurosci 2002; 22: 5705–5712.

    Article  CAS  Google Scholar 

  64. Cragg SJ, Hille CJ, Greenfield SA . Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J Neurosci 2000; 20: 8209–8217.

    Article  CAS  Google Scholar 

  65. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW . Serial analysis of gene expression. Science 1995; 270: 484–487.

    Article  CAS  Google Scholar 

  66. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D . et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 2000; 18: 630–634.

    Article  CAS  Google Scholar 

  67. Sun Y, Zhang L, Johnston NL, Torrey EF, Yolken RH . Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. Br J Psychiatry 2001; 178: S137–S141.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grants #NS44169 (EAT) and #GM32355 (JGS) and Digital Gene Technologies. We thank James Koziol for statistical advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J G Sutcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E., George, R., Danielson, P. et al. Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism-related proteins. Mol Psychiatry 8, 983–993 (2003). https://doi.org/10.1038/sj.mp.4001425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001425

Keywords

This article is cited by

Search

Quick links