Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Article
  • Published:

Affective disorders, antidepressant drugs and brain metabolism

Abstract

There is increasing evidence that affective disorders are associated with dysfunction of neurotransmitter postsynaptic transduction pathways and that chronic treatment with clinically active drugs results in adaptive modification of these pathways. Despite the close dependence of signal transduction on adenosine triphosphate (ATP) availability, the changes in energy metabolism in affective disorders are largely unknown. This question has been indirectly dealt with through functional imaging studies (PET, SPECT, MRS). Despite some inconsistencies, PET and SPECT studies suggest low activity in cortical (especially frontal) regions in depressed patients, both unipolar and bipolar, and normal or increased activity in the manic pole. Preliminary MRS studies indicate some alterations in brain metabolism, with reduced creatine phosphate and ATP levels in the brain of patients with affective disorders. However, the involvement of the energy metabolism in affective disorders is still debated. We propose direct neurochemical investigations on mitochondrial functional parameters of energy transduction, such as the activities of (a) the enzymatic systems of oxidative metabolic cycle (Kreb's cycle); (b) the electron transfer chain; (c) oxidative phosphorylation, and (d) the enzyme activities of ATP-requiring ATPases. These processes should be studied in affective disorders and in animals treated with antidepressant drugs or lithium.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151–162.

    Article  CAS  PubMed  Google Scholar 

  2. Blier P, de Montigny C . Current advances and trends in the treatment of depression. TiPS 1994; 15: 220–226.

    CAS  PubMed  Google Scholar 

  3. Racagni G, Brunello N, Tinelli D, Perez J . New biochemical hypothesis on the mechanism of action of antidepressant drugs: cAMP-dependent phosphorylation system. Pharmacopsychiatry 1992; 25: 51–55.

    Article  CAS  PubMed  Google Scholar 

  4. Manji HK . G proteins: implications for psychiatry. Am J Psychiatry 1992; 149: 746–760.

    Article  CAS  PubMed  Google Scholar 

  5. Warsh JJ, Li PP . Second messenger systems and mood disorders. Curr Opin Psychiatry 1996; 9: 23–29.

    Article  Google Scholar 

  6. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  PubMed  Google Scholar 

  7. Popoli M, Brunello N, Perez J, Racagni G . Second messenger-regulated protein kinases in brain: their functional role and the action of antidepressant drugs. J Neurochem 2000; 74: 21–33.

    Article  CAS  PubMed  Google Scholar 

  8. Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R . Abnormalities of cAMP signaling in affective disorders: implications for pathophysiology and treatment. Bipol Disord 2000; 2: 27–36.

    Article  CAS  Google Scholar 

  9. Manji HK, Potter WZ, Lenox RH . Signal transduction pathways. Molecular targets for lithium's action. Arch Gen Psychiatry 1995; 52: 531–543.

    Article  CAS  PubMed  Google Scholar 

  10. Lenox RH, McNamara RK, Papke RL, Manji HK . Neurobiology of lithium: an update. J Clin Psychiatry 1998; 59(Suppl 6): 37–47.

    CAS  PubMed  Google Scholar 

  11. Birnbaumer L . G proteins in signal transduction. Annu Rev Pharmacol Toxicol 1990; 30: 675–705.

    Article  CAS  PubMed  Google Scholar 

  12. Gilman AG . The Albert Lasker Medical Awards: G proteins and regulation of adenylyl cyclase. JAMA 1989; 262: 1819–1825.

    Article  CAS  PubMed  Google Scholar 

  13. Simonds WF . G protein regulation of adenylate cyclase. TiPS 1999; 20: 66–73.

    CAS  PubMed  Google Scholar 

  14. Jope RS, Song L, Powers R . Agonist-induced, GTP-dependent phosphoinositide hydrolysis in postmortem human brain membranes. J Neurochem 1994; 62: 180–186.

    Article  CAS  PubMed  Google Scholar 

  15. Fischer SK . Homologous and heterologous regulation of receptor-stimulated phosphoinositide hydrolysis. Eur J Pharmacol 1995; 288: 231–250.

    Article  Google Scholar 

  16. Jope RS . Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999; 4: 117–128.

    Article  CAS  PubMed  Google Scholar 

  17. Hudmon A, Schulman H . Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002; 71: 473–510.

    Article  CAS  PubMed  Google Scholar 

  18. Scott JD . Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 1991; 50: 123–145.

    Article  CAS  PubMed  Google Scholar 

  19. Montminy M . Transcriptional regulation by cyclic AMP. Annu Rev Biochem 1997; 66: 807–822.

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka C, Nishizuka Y . The protein kinase C family for neuronal signaling. Annu Rev Neurosci 1994; 17: 551–567.

    Article  CAS  PubMed  Google Scholar 

  21. Mochly-Rosen D . Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 1995; 268: 247–251.

    Article  CAS  PubMed  Google Scholar 

  22. Friedman E, Wang H-Y . Receptor-mediated activation of G proteins is increased in postmortem brains of bipolar affective disorder subjects. J Neurochem 1996; 67: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  23. Young LT, Li PP, Kish SJ, Siu KP, Kamble A, Hornykiewicz O et al. Cerebral cortex Gsα protein levels and forskolin-stimulated cyclic AMP formation are increased in bipolar affective disorder. J Neurochem 1993; 61: 890–898.

    Article  CAS  PubMed  Google Scholar 

  24. Dowlatshahi D, MacQueen GM, Wang J-F, Reiach JS, Young LT . G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at time of death. J Neurochem 1999; 73: 1121–1126.

    Article  CAS  PubMed  Google Scholar 

  25. Reiach JS, Li PP, Warsh JJ, Kish SJ, Young LT . Reduced adenylyl cyclase immunolabeling and activity in postmortem temporal cortex of depressed suicide victims. J Affect Disord 1999; 56: 141–151.

    Article  CAS  PubMed  Google Scholar 

  26. Rahman S, Li PP, Young LT, Kofman O, Kish SJ, Warsh JJ . Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem 1997; 68: 297–304.

    Article  CAS  PubMed  Google Scholar 

  27. Fields A, Li PP, Kish SJ, Warsh JJ . Increased cyclic AMP-dependent protein kinase activity in postmortem brain from patients with bipolar affective disorder. J Neurochem 1999; 73: 1704–1710.

    Article  CAS  PubMed  Google Scholar 

  28. Warsh JJ, Mathews R, Young LT, Li PP . Brain Gαq/11 and phospholipase C-β1 immunoreactivity in bipolar affective disorder (BD). Can J Physiol Pharmacol 1994; 72: 545.

    Google Scholar 

  29. Jope RS, Song L, Li PP, Young LT, Kish SJ, Pacheco MA et al. The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem. 1996; 66: 2402–2409.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H-Y, Friedman E . Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 2001; 50: 364–370.

    Article  CAS  PubMed  Google Scholar 

  31. Brown AS, Mallinger AG, Renbaum LC . Elevated platelet membrane phosphatidylinositol-4,5-biphosphate in bipolar mania. Am J Psychiatry 1993; 150: 1252–1254.

    Article  CAS  PubMed  Google Scholar 

  32. Spleiss O, van Calker D, Scharer L, Adamovic K, Berger M, Gebicke-Haerter PJ . Abnormal G protein αs– and αi2-subunit mRNA expression in bipolar affective disorder. Mol Psychiatry 1998; 3: 512–520.

    Article  CAS  PubMed  Google Scholar 

  33. Soares JC, Mallinger AG . Intracellular phosphatidylinositol pathway abnormalities in bipolar disorder patients. Psychoparmacol Bull 1997; 33: 685–691.

    CAS  Google Scholar 

  34. Perez J, Zanardi R, Mori S, Gasperini M, Smeraldi E, Racagni G . Abnormalities of cAMP-dependent endogenous phosphorylation in platelets from patients with bipolar disorder. Am J Psychiatry 1995; 152: 1204–1206.

    Article  CAS  PubMed  Google Scholar 

  35. Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R . Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder. J Psych Res 2000; 34: 99–104.

    Article  CAS  Google Scholar 

  36. Hahn C-G, Friedman E . Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipol Disord 1999; 2: 81–86.

    Article  Google Scholar 

  37. Young LT, Li PP, Kamble A, Siu KP, Warsh JJ . Mononuclear leukocyte levels of G proteins in depressed patients with bipolar disorder or major depressive disorder. Am J Psychiatry 1994; 151: 594–596.

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell PB, Manji HK, Chen G, Jolkovsky L, Smith-Jackson E, Denicoff K et al. High levels of Gsa in platelets of euthymic patients with bipolar affective disorders. Am J Psychiatry 1997; 154: 218–223.

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Masana MI, Manji HK . Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipol Disord 2000; 2: 217–236.

    Article  CAS  Google Scholar 

  40. Ozawa H, Gsell W, Frolich L, Zochling R, Pantucek F, Beckmann H et al. Imbalance of the Gs and Gi/o function in post-mortem human brain of depressed patients. J Neural Transm 1993; 94: 63–69.

    Article  CAS  Google Scholar 

  41. Cowburn RF, Marcusson JO, Eriksson A, Wiehager B, O'Neill C . Adenylyl cyclase activity and G-protein subunit levels in post-mortem frontal cortex of suicide victims. Brain Res 1993; 620: 297–304.

    Article  Google Scholar 

  42. Dwivedi Y, Conley RR, Roberts RC, Tamminga CA, Pandey GN . [(3)H] cAMP binding sites and a protein kinase a activity in the prefrontal cortex of suicide victims. Am J Psychiatry 2002;159: 66–73.

    Article  PubMed  Google Scholar 

  43. Lowther S, Katona CLE, Crompton MR, Horton RW . Brain [3H]c AMP binding sites are unaltered in depressed suicides, but decreased by antidepressants. Brain Res 1997; 758: 223–228.

    Article  CAS  PubMed  Google Scholar 

  44. Dowlatshahi D, MacQueen GM, Wang J, Young LT . Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 1998; 352: 1754–1755.

    Article  CAS  PubMed  Google Scholar 

  45. Pacheco MA, Stockmeier C, Meltzer HY, Overholser JC, Dilley GE, Jope RS . Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 1996; 723: 37–45.

    Article  CAS  PubMed  Google Scholar 

  46. Shelton RC, Manier H, Susler F . cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 1996; 153:1037–1042.

    Article  CAS  PubMed  Google Scholar 

  47. Shelton RC, Manier H, Peterson CS, Ellis TC, Susler F . Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers. Int J Neuropsychopharmacol 1999; 2: 187–192.

    Article  CAS  PubMed  Google Scholar 

  48. Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R . Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 2001; 6: 44–49.

    Article  CAS  PubMed  Google Scholar 

  49. Morishita S, Aoki S . Effects of tricyclic antidepressants on protein kinase C activity in rabbit and human platelets in vivo. J Affect Disord 2002; 70: 329–332.

    Article  CAS  PubMed  Google Scholar 

  50. Perez J, Tinelli D, Bianchi E, Brunello N, Racagni G . cAMP binding proteins in the rat cerebral cortex after administration of selective 5-HT and NE reuptake blockers with antidepressant activity. Neuropsychopharmaology 1991; 4: 57–64.

    CAS  Google Scholar 

  51. Mori S, Garbini S, Caivano M, Perez J, Racagni G . Time-course changes in rat cerebral cortex subcellular distribution of the cyclic-AMP binding after treatment with selective serotonin reuptake inhibitors. Int J Neuropsychopharmacol 1998; 1: 3–10.

    Article  CAS  PubMed  Google Scholar 

  52. Mori S, Zanardi R, Popoli M, Garbini S, Brunello N, Smeraldi E et al. cAMP-dependent phosphorylation system after short and long-term administration of moclobemide. J Psychiatr Res 1998; 32: 111–115.

    Article  CAS  PubMed  Google Scholar 

  53. De Montis GM, Devoto P, Gessa GL, Porcella A, Serra G, Tagliamonte A . Selective adenylate cyclase increase in the limbic area of long-term imipramine-treated rats. Eur J Pharmacol 1990; 180: 169–174.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Rasenick MM . Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. JPET 1995; 275: 509–517.

    CAS  Google Scholar 

  55. Nestler EJ, Terwilleger RZ, Duman RS . Chronic antidepressant administration alters subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 1989; 53: 1644–1647.

    Article  CAS  PubMed  Google Scholar 

  56. Tadokoro C, Kiuchi Y, Yamazaki Y, Oguchi K, Kamijima . Effects of imipramine and sertraline on protein kinase activity in rat frontal cortex. Eur J Pharmacol 1998; 342: 51–54.

    Article  CAS  PubMed  Google Scholar 

  57. Perez J, Mori S, Caivano M, Popoli M, Zanardi R, Smeraldi E et al. Effects of fluvoxamine on protein phosphorylation system associated with rat neuronal microtubules. Eur Neuropsychopharmacol 1995; 5(Suppl): 65–69.

    Article  CAS  PubMed  Google Scholar 

  58. Popoli M, Vocaturo C, Perez J, Smeraldi E, Racagni G . Presynaptic Ca2+/calmodulin-dependent protein kinase II: autophosphorylation and activity increase in hippocampus after long-term blockade of serotonin reuptake. Mol Pharmacol 1995; 48: 623–629.

    CAS  PubMed  Google Scholar 

  59. Popoli M, Venegoni A, Vocaturo C, Buffa L, Perez J, Smeraldi E et al. Long-term blockade of serotonin reuptake affects synaptotagmin phosphorylation in the hippocampus. Mol Pharmacol 1997; 51: 19–26.

    Article  CAS  PubMed  Google Scholar 

  60. Popoli M, Mori S, Brunello N, Perez J, Gennarelli M, Racagni G . Serine/threonine kinases as molecular targets of antidepressants: implications for pharmacological treatment and pathophysiology of affective disorders. Pharmacol Ther 2001; 89: 149–170.

    Article  CAS  PubMed  Google Scholar 

  61. Popoli M, Gennarelli M, Racagni G . Modulation of synaptic plasticity by stress and antidepressants. Bipol Disord 2002; 3: 1–17.

    Google Scholar 

  62. Pilc A, Branski P, Palucha A, Aronowski J . The effect of prolonged imipramine and electroconvulsive shock on calcium/calmodulin-dependent protein kinase II in the hippocampus of rat brain. Neuropharmacology 1999; 38: 597–603.

    Article  CAS  PubMed  Google Scholar 

  63. Consogno E, Racagni G, Popoli M . Modifications in brain CaM kinase II after long-term treatment with desmethylimipramine. Neuropsychopharmacology 2001; 24: 21–30.

    Article  CAS  PubMed  Google Scholar 

  64. Nibuya M, Nestler EJ, Duman RS . Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen ACH, Shirayama Y, Shin KH, Neve RL, Duman RS . Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry 2001; 49: 753–762.

    Article  CAS  PubMed  Google Scholar 

  67. Duman RS, Malberg J, Thome J . Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  68. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn A-M, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  69. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM . Cortical gray matter reduction associated with treatment-resistant unipolar depression. Br J Psychiatry 1998; 172: 527–532.

    Article  CAS  PubMed  Google Scholar 

  70. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically-healthy women with recurrent major depression. J Neurosci 1999; 19:5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115–117.

    Article  CAS  PubMed  Google Scholar 

  72. Rajkowska G . Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766–777.

    Article  CAS  PubMed  Google Scholar 

  73. Soares JC, Mann JJ . The anatomy of mood disorders — review of structural neuroimaging studies. Biol Psychiatry 1997; 41: 86–106.

    Article  CAS  PubMed  Google Scholar 

  74. Manji HK, Moore GJ, Rajkowska G, Chen G . Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–593.

    Article  CAS  PubMed  Google Scholar 

  75. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Effect of antidepressant treatment and learned helplessness training on hippocampal neurogenesis in the adult rat. Soc Neurosci Abstr 2000; 26:1044.

    Google Scholar 

  77. Duman RS, Nakagawa S, Malberg J . Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25: 836–844.

    Article  CAS  PubMed  Google Scholar 

  78. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by electroconvulsive seizure and antidepressant treatment. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM . Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56: 131–137.

    Article  CAS  PubMed  Google Scholar 

  80. Avissar S, Schreiber G, Danon A, Belmaker RH . Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 1988; 331: 440–442.

    Article  CAS  PubMed  Google Scholar 

  81. Mork A, Geisler A . Effects of chronic lithium treatment on agonist-enhanced extracellular concentrations of cyclic AMP in the dorsal hippocampus of freely moving rats. J Neurochem 1995; 65: 134–139.

    Article  CAS  PubMed  Google Scholar 

  82. Mori S, Zanardi R, Popoli M, Smeraldi E, Racagni G, Perez J . Inhibitory effects of lithium on cAMP-dependent protein kinase phosphorylation system. Life Sci 1996; 59: 99–104.

    Article  Google Scholar 

  83. Casebolt TL, Jope RS . Effects of chronic lithium treatment on protein kinase C and cyclic AMP-dependent protein phosphorylation. Biol Psychiatry 1991; 29: 233–243.

    Article  CAS  PubMed  Google Scholar 

  84. Jensen JB, Mork A . Altered protein phosphorylation in the rat brain following chronic lithium and carbamazepine treatments. Eur Neuropharmacol 1997; 7: 173–179.

    Article  CAS  Google Scholar 

  85. Manji HK, Etcheberrigaray R, Chen G, Olds JL . Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the α isozyme. J Neurochem 1993; 61: 2303–2310.

    Article  CAS  PubMed  Google Scholar 

  86. Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ . Chronic sodium valproate selectively decreases protein kinase C α and ɛ in vitro. J Neurochem 1994; 63: 2361–2364.

    Article  CAS  PubMed  Google Scholar 

  87. Lenox RH, Watson DG, Patel J, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–340.

    Article  CAS  PubMed  Google Scholar 

  88. Wang H-Y, Johnson GP, Friedman E . Lithium treatment inhibits protein kinase C translocation in rat brain cortex. Psychopharmacol 2001; 158: 80–86.

    Article  CAS  Google Scholar 

  89. Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ . Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996; 15: 370–381.

    Article  CAS  PubMed  Google Scholar 

  90. Villa RF, Gorini A . Neuronal signaling during hypoxia and pharmacological treatment. In: Arthur M (ed). Neural Signaling, Vol. 48, Sackler Colloquia — National Academy of Sciences: Washington, 2001, p 56.

    Google Scholar 

  91. Phelps ME . Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci 2000; 97: 9226–9233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Magistretti PJ, Pellerin L . Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond 1999; 354: 1155–1163.

    Article  CAS  Google Scholar 

  93. Chih C-P, Lipton P, Roberts Jr EL . Do active cerebral neurons really use lactate rather than glucose? TINS 2001; 24: 573–578.

    CAS  PubMed  Google Scholar 

  94. Strakowski SM, DelBello MP, Adler C, Cecil KM, Sax KW . Neuroimaging in bipolar disorder. Bipol Disord 2000; 2: 148–164.

    Article  CAS  Google Scholar 

  95. Drevets WC . Neuroimaging studies of mood disorders. Biol Psychiatry 2000; 48: 813–829.

    Article  CAS  PubMed  Google Scholar 

  96. Stoll AL, Renshaw PF, Yurgelun-Todd DA, Cohen BM . Neuroimaging in bipolar disorders: what have we learned? Biol Psychiatry 2000; 48: 505–517.

    Article  CAS  PubMed  Google Scholar 

  97. Videbech P . PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiat Scand 2000; 101: 11–20.

    Article  CAS  PubMed  Google Scholar 

  98. Drevets WC . Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 1998; 49: 341–361.

    Article  CAS  PubMed  Google Scholar 

  99. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  100. Drevets WC . Prefrontal cortical-amygdalar metabolism in major depression. Ann NY Acad Sci 1999; 877: 614–637.

    Article  CAS  PubMed  Google Scholar 

  101. Drevets WC, Raichle ME . Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull 1992; 28: 261–274.

    CAS  PubMed  Google Scholar 

  102. Bench CJ, Frackowiak RSJ, Dolan RJ . Changes in regional cerebral blood flow on recovery from depression. Psychol Med 1995; 25: 247–251.

    Article  CAS  PubMed  Google Scholar 

  103. Brody AL, Saxena S, Silverman DHS, Alborzian S, Fairbanks LA, Phelphs ME et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res: Neuroimaging Section 1999; 91: 127–139.

    Article  CAS  Google Scholar 

  104. Brody AL, Saxena S, Stoessel P, Gilles LA, Fairbanks LA, Alborzian S et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy. Arch Gen Psychiatry 2001; 58: 631–640.

    Article  CAS  PubMed  Google Scholar 

  105. Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary MT, Abel L et al. Effect of sertraline on regional metabolic rate in patients with affective disorders. Biol Psychiatry 1997; 41: 15–22.

    Article  CAS  PubMed  Google Scholar 

  106. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001; 158: 899–905.

    Article  CAS  PubMed  Google Scholar 

  107. Goodwin GM, Austin M-P, Dougall N, Ross M, Murray C, O'Carroll RE et al. State changes in brain activity shown by uptake of 99mTc-exametazine with single photon emission tomography in major depression before and after treatment. J Affect Disord 1993; 29: 243–253.

    Article  CAS  PubMed  Google Scholar 

  108. Mayberg HS, Brannan SK, Nahurin RK, Jerabek PA, Brickman JS, Tekell JL et al. Cingulate function in depression: a potential predictor of treatment response. NeuroReport 1997; 8: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  109. Smith GS, Reynolds CF, Pollock B, Derbyshire S, Nofzinger E, Dew MA et al. Cerebral glucose metabolism response to combined sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatry 1999; 156: 683–689.

    CAS  PubMed  Google Scholar 

  110. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunnet Jr WE . Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 1992; 149: 538–543.

    Article  CAS  PubMed  Google Scholar 

  111. Brody AL, Saxena S, Mendelkern MA, Fairbanks LA, Ho ML, Baxter LR . Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 2001; 50: 171–178.

    Article  CAS  PubMed  Google Scholar 

  112. Freo U, Pietrini P, Dam M, Pizzolato G, Battistin L . The tricyclic antidepressant clomipramine dose-dependently reduces regional metabolic rates for glucose in awake rats. Psychopharmacology 1993; 113: 53–59.

    Article  CAS  PubMed  Google Scholar 

  113. Freo U, Pietrini P, Pizzolato G, Furey M, Merico A, Ruggero S et al. Cerebral metabolic responses to clomipramine are greatly reduced following pretreatment with the specific serotonin neurotoxin para-cloroamphetamine (PCA)—a 2-deoxyglucose study in rats. Neuropsychopharmacology 1995; 13: 215–222.

    Article  CAS  PubMed  Google Scholar 

  114. Goodwin GM, Cavanagh JT, Glabus MF, Kehoe RF, O'Carroll RE, Ebmeier KP . Uptake of 99mTc-exametazime shown by single photon emission computed tomography before and after lithium withdrawal in bipolar patients: association with mania. Br J Psychiatry 1997; 170: 426–430.

    Article  CAS  PubMed  Google Scholar 

  115. Kato T, Inubushi T, Kato N . Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 1998; 10: 133–147.

    Article  CAS  PubMed  Google Scholar 

  116. Moore CM, Renshaw PF . Magnetic resonance spectroscopy studies of affective disorders In: Krishnan KRR, Doraiswamy PM (eds). Magnetic Resonance Studies of Affective Disorders. Marcel Dekker Inc.: New York, 1997, pp 185–213.

    Google Scholar 

  117. Renshaw PF, Parow AM, Hirashima F, Ke Y, Moore CM, Frederick BD et al. Multinuclear magnetic resonance spectroscopic studies of brain purines in major depression. Am J Psychiatry 2001; 158: 2048–2055.

    Article  CAS  PubMed  Google Scholar 

  118. Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T . Reduction of brain phosphocreatine in bipolar II disorder detected by phophorous-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125–133.

    Article  CAS  PubMed  Google Scholar 

  119. Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T et al. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 1995; 25: 557–566.

    Article  CAS  PubMed  Google Scholar 

  120. Deicken RF, Fein G, Weiner MW . Abnormal frontal lobe phosphorous metabolism in bipolar disorder. Am J Psychiatry 1995; 152: 915–918.

    Article  CAS  PubMed  Google Scholar 

  121. Murashita J, Kato T, Shioiri T, Inubushi T, Kato N . Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 2000; 30: 107–115.

    Article  CAS  PubMed  Google Scholar 

  122. Kato T, Takahashi S, Shioiri T, Inubushi T . Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1992; 26: 223–230.

    Article  CAS  PubMed  Google Scholar 

  123. Kato T, Takahashi S, Shioiri T, Inubushi T . Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53–60.

    Article  CAS  PubMed  Google Scholar 

  124. Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T . Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci 1998; 248: 301–306.

    Article  CAS  PubMed  Google Scholar 

  125. Volz H-P, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 1998; 248: 289–295.

    Article  CAS  PubMed  Google Scholar 

  126. Moore CM, Christensen JD, Lafer B, Fava M, Renshaw PF . Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy. Am J Psychiatry 1997; 154: 116–118.

    Article  CAS  PubMed  Google Scholar 

  127. Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW . Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992; 12: 584–592.

    Article  CAS  PubMed  Google Scholar 

  128. El-Mallakh RS, Wyatt RJ . The Na+, K+-ATPase hypothesis for bipolar illness. Biol Psychiatry 1995; 37: 235–244.

    Article  CAS  PubMed  Google Scholar 

  129. Tsai G, Coyle JT . N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 1995; 46: 531–540.

    Article  CAS  PubMed  Google Scholar 

  130. Bates TE, Strangward M, Keelan J, Davey GP, Munro PMG, Clark JB . Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 1996; 7: 1397–1400.

    Article  CAS  PubMed  Google Scholar 

  131. Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA . Decreased dorsolateral prefrontal N-acetylaspartate in bipolar disorder. Biol Psychiatry 2000; 47: 475–481.

    Article  CAS  PubMed  Google Scholar 

  132. Bertolino A, Frye M, Callicott JH, Mattay VS, Post R, Weinberger DR . Neuronal pathology in the hippocampal area of patients with bipolar disorder: a 1H-MRSI study. Biol Psychiatry 1999; 45: 135S.

    Article  Google Scholar 

  133. Doraiswamy PM, MacFall J, Krishnan RR, O'Connor C, Wan X, Benaur M et al. Magnetic resonance assessment of cerebral perfusion in depressed cardiac patients: preliminary findings. Am J Psychiatry 1999; 156: 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  134. Steffens DC, Helms MJ, Krishnan RR, Burke GL . Cerebrovascular disease and depression symptoms in the cardiovascular health study. Stroke 1999; 30: 2159–2166.

    Article  CAS  PubMed  Google Scholar 

  135. Katyare SS, Rajan RR . Effect of long-term in vivo treatment with imipramine on oxidative energy metabolism in rat brain mitochondria. Comp Biochem Physiol 1995; 112: 353–357.

    CAS  Google Scholar 

  136. Viola MS, Bojorge G, Rodríguez de Lores Arnaiz G, Enero MA . Stimulation of Na+-K+ -ATPase activity in certain membranes of the rat central nervous system (CNS) by acute administration of desipramine (DMI). Cell Mol Neurobiol 1989; 9: 263–271.

    Article  CAS  PubMed  Google Scholar 

  137. Viola MS, Rodríguez de Lores Arnaiz G, Enero MA . Na+-K+-ATPase activity in CNS and noradrenergic neurotransmission: time course of differential desipramine (DMI) effects. Neurochem Int 1994; 24: 91–97.

    Article  CAS  PubMed  Google Scholar 

  138. Caccia S, Cappi M, Fracasso C, Garattini S . Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in rat. Psychopharmacol 1990; 100: 509–514.

    Article  CAS  Google Scholar 

  139. Villa RF, Gorini A . Pharmacology of Lazaroids and brain energy metabolism: a review. Pharmacol Rev 1997; 49: 99–136.

    CAS  PubMed  Google Scholar 

  140. Kato T, Stine OC, McMahon FJ, Crowe RR . Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 42; 871–875.

  141. Kato T, Kunugi H, Nanko S, Kato N . Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 2001; 62: 151–164.

    Article  CAS  PubMed  Google Scholar 

  142. Kato T, Kato N . Mitochondrial dysfunction in bipolar disorder. Bipol Disord 2000; 2: 180–190.

    Article  CAS  Google Scholar 

  143. Villa R F, Gorini A, LoFaro A, Dell'Orbo C . A critique on the preparation and enzymatic characterization of synaptic and non-synaptic mitochondria from hippocampus. Cell Mol Neurobiol 1989; 9: 247–262.

    Article  PubMed  Google Scholar 

  144. Villa RF, Gorini A, Hoyer S . ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during ageing. Neurochem Res 2002; 27: 861–870.

    Article  CAS  PubMed  Google Scholar 

  145. Villa RF, Turpeenoja L, Magrì G, Gorini A, Ragusa N, Giuffrida-Stella AM . Effect of hypoxia on protein composition of synaptic plasma membranes from cerebral cortex during aging. Neurochem Res 1991; 16: 827–832.

    Article  CAS  PubMed  Google Scholar 

  146. Villa RF, Arnaboldi R, Ghigini B, Gorini A . Mitochondrial factors involved in Parkinson's disease by MPTP toxicity in Macaca fascicularis and drug effect. Neurochem Res 1992; 17: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  147. Gorini A, Ghigini B, Villa RF . Acetylcholinesterase activity of synaptic plasma membranes during ageing: effect of L-acetylcarnitine. Dementia 1996; 7: 147–154.

    CAS  PubMed  Google Scholar 

  148. Gorini A, Canosi U, Devecchi E, Geroldi D, Villa RF . ATP-ases enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex. Prog Neuro-Psychoparmacol Biol Psychiat 2002; 26: 81–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Judy Baggott for kindly editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Villa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretti, A., Gorini, A. & Villa, R. Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatry 8, 773–785 (2003). https://doi.org/10.1038/sj.mp.4001353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001353

Keywords

This article is cited by

Search

Quick links