Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia

Abstract

As schizophrenia is genetically and clinically heterogeneous, systematic investigations are required to determine whether ICD-10 or DSM-IV categorical diagnoses identify a phenotype suitable and sufficient for genetic research, or whether correlated phenotypes incorporating neurocognitive performance and personality traits provide a phenotypic characterisation that accounts better for the underlying variation. We utilised a grade of membership (GoM) model (a mathematical typology developed for studies of complex biological systems) to integrate multiple cognitive and personality measurements into a limited number of composite graded traits (latent pure types) in a sample of 61 nuclear families comprising 80 subjects with ICD-10/DSM-IV schizophrenia or schizophrenia spectrum disorders and 138 nonpsychotic first-degree relatives. GoM probability scores, computed for all subjects, allowed individuals to be partly assigned to more than one pure type. Two distinct and contrasting neurocognitive phenotypes, one familial, associated with paranoid schizophrenia, and one sporadic, associated with nonparanoid schizophrenia, accounted for 74% of the affected subjects. Combining clinical diagnosis with GoM scores to stratify the entire sample into liability classes, and using variance component analysis (SOLAR), in addition to parametric and nonparametric multipoint linkage analysis, we explored candidate regions on chromosomes 6, 10 and 22. The results indicated suggestive linkage for the familial neurocognitive phenotype (multipoint MLS 2.6 under a low-penetrance model and MLS>3.0 under a high-penetrance model) to a 14 cM area on chromosome 6, including the entire HLA region. Results for chromosomes 10 and 22 were negative. The findings suggest that the familial neurocognitive phenotype may be a pleiotropic expression of genes underlying the susceptibility to paranoid schizophrenia. We conclude that use of composite neurocognitive and personality trait measurements as correlated phenotypes supplementing clinical diagnosis can help stratify the liability to schizophrenia across all members of families prior to linkage, allow the search for susceptibility genes to focus selectively on subsets of families at high genetic risk, and augment considerably the power of genetic analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE et al. Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization Ten-Country Study. Psychol Med Monogr Suppl 1992; 20: 1–97.

    CAS  PubMed  Google Scholar 

  2. Murray CJL, Lopez AD . The Global Burden of Disease. A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020. The Harvard School of Public Health, distributed by Harvard University Press: Cambridge, MA, 1996.

  3. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic–epidemiological perspective. Schizophr Bull 1993; 19: 261–285.

    CAS  PubMed  Google Scholar 

  4. Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R et al. Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 2000; 42: 175–182.

    CAS  PubMed  Google Scholar 

  5. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  6. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 1994; 54: 59–71.

    CAS  PubMed  Google Scholar 

  8. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    PubMed  Google Scholar 

  9. Faraone SV, Matise T, Svrakic D, Pepple J, Malspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 290–295.

    CAS  PubMed  Google Scholar 

  10. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A Genome-wide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  12. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 19: 252–260.

    Google Scholar 

  14. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 2000; 5: 638–649.

    CAS  PubMed  Google Scholar 

  15. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet 1998; 81: 364–376.

    CAS  PubMed  Google Scholar 

  16. Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA et al. A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet 1999; 8: 1729–1739.

    CAS  PubMed  Google Scholar 

  17. Pulver A . Search for schizophrenia susceptibility genes. Biol Psychiatry 2000; 47: 221–230.

    CAS  PubMed  Google Scholar 

  18. DeLisi L, Crow T . Chromosome Workshops 1998: current state of psychiatric linkage. Am J Med Genet 1999; 88: 215–218.

    CAS  PubMed  Google Scholar 

  19. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    CAS  PubMed  Google Scholar 

  20. O'Dononvan MC, Owen MJ . Candidate-gene association studies of schizophrenia. Am J Hum Genet 1999; 65: 587–592.

    Google Scholar 

  21. Ginsburg BE, Werick TM, Escobar JI, Kugelmass S, Treanor JJ, Wendtland L . Molecular genetics of psychopathologies: a search for simple answers to complex problems. Behav Genet 1996; 26: 325–333.

    CAS  PubMed  Google Scholar 

  22. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J . Psychiatric genetics: search for phenotypes. Trends Neurosci 1998; 21: 102–105.

    CAS  PubMed  Google Scholar 

  23. Thaker GK, Carpenter Jr WT . Advances in schizophrenia. Nat Med 2001; 7: 667–671.

    CAS  PubMed  Google Scholar 

  24. Jablensky A . Symptoms of schizophrenia. In: Henn F, Sartorius N, Helmchen H, Lauter H (eds). Contemporary Psychiatry. Vol. 3, Springer: Berlin, 2001, pp 3–36.

    Google Scholar 

  25. McGue M, Gottesman II . Genetic linkage in schizophrenia: perspectives from genetic epidemiology. Schizophr Bull 1989; 15: 453–464.

    CAS  PubMed  Google Scholar 

  26. Risch N . Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol 1990; 7: 3–16.

    CAS  PubMed  Google Scholar 

  27. Goldberg TE, Gold JM, Greenberg R, Griffin S, Schulz SC, Pickar D et al. Contrasts between patients with affective disorders and patients with schizophrenia on a neuropsychological test battery. Am J Psychiatry 1993; 150: 1355–1362.

    CAS  PubMed  Google Scholar 

  28. Finkelstein JR, Cannon TD, Gur RE, Gur RC, Moberg P . Attentional dysfunctions in neuroleptic-naïve and neuroleptic withdrawn schizophrenic patients and their siblings. J Abnorm Psychol 1997; 106: 203–212.

    CAS  PubMed  Google Scholar 

  29. Waldo MC, Adler LE, Leonard S, Olincy A, Ross RG, Harris JG et al. Familial transmission of risk factors in the first-degree relatives of schizophrenic people. Biol Psychiatry 2000; 47: 231–239.

    CAS  PubMed  Google Scholar 

  30. Hoff AL, Kremen WS . Is there a cognitive phenotype for schizophrenia: the nature and course of the disturbance in cognition? Curr Opin Psychiatry 2002; 15: 43–48.

    Google Scholar 

  31. Pardo PJ, Knesevich MA, Vogler GP, Pardo JV, Towne B, Cloninger CR et al. Genetic and state variables of neurocognitive dysfunction in schizophrenia: a twin study. Schizophr Bull 2000; 26: 459–477.

    CAS  PubMed  Google Scholar 

  32. Cannon TD, Huttunen MO, Lonnqvist J, Tuulio-Henriksson A, Pirkola T, Glahn D et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 2000; 67: 369–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arolt V, Lencer R, Nolte A, Muller-Myhsok B, Purmann S, Schurmann M et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am J Med Genet 1996; 67: 564–579.

    CAS  PubMed  Google Scholar 

  34. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Myles-Worsley M, Coon H, McDowell J, Brenner C, Hoff M, Lind B et al. Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families. Am J Med Genet 1999; 88: 544–550.

    CAS  PubMed  Google Scholar 

  36. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ . Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 1998; 55: 433–440.

    CAS  PubMed  Google Scholar 

  37. Egan MF, Goldberg TE, Gscheidle T, Weirich M, Rawlings R, Hyde TM et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol Psychiatry 2001; 50: 98–107.

    CAS  PubMed  Google Scholar 

  38. Faraone SV, Seidman LJ, Kremen WS, Pepple JR, Lyons MJ, Tsuang MT . Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnorm Psychol 1995; 104: 286–304.

    CAS  PubMed  Google Scholar 

  39. Cornblatt BA, Dworkin RH, Wolf LE, Erlenmeyer-Kimling L . Markers, developmental processes, and schizophrenia. In: Lenzensweger MF, Haugaard JJ (eds). Frontiers of Developmental Psychopathology. Oxford University Press: New York, 1996, pp 125–147.

    Google Scholar 

  40. Woodbury MA, Clive J, Garson Jr A . Mathematical typology: a grade of membership technique for obtaining disease definition. Comput Biomed Res 1978; 11: 277–298.

    CAS  PubMed  Google Scholar 

  41. Manton KG, Woodbury MA, Tolley HD . Statistical Applications Using Fuzzy Sets. John Wiley & Sons: New York, 1994.

    Google Scholar 

  42. Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R et al. SCAN. Schedules for clinical assessment in neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    CAS  PubMed  Google Scholar 

  43. Maxwell ME . Family Interview for Genetic Studies (FIGS): Manual for FIGS. Clinical Neurogenetics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, 1992.

    Google Scholar 

  44. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. Diagnostic Criteria for Research. WHO: Geneva, 1993.

  45. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  46. Nelson HE, Willison J . National Adult Reading Test Manual, 2nd edn. NFER-Nelson: Windsor: Berkshire, UK, 1991.

    Google Scholar 

  47. Zachary RA, Crumpton E, Spiegel DE . Estimating WAIS-R IQ from the Shipley Institute of Living Scale. J Clin Psychol 1985; 41: 532–540.

    Google Scholar 

  48. Nuechterlein KH . Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. J Abnorm Psychol 1983; 92: 4–28.

    CAS  PubMed  Google Scholar 

  49. Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L . The Continuous Performance Test identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res 1988; 26: 223–238.

    CAS  PubMed  Google Scholar 

  50. Snodgrass JG, Corwin J . Pragmatics of measuring recognition memory: applications to dementia and amnesia. J Exp Psychol Gen 1988; 117: 34–50.

    CAS  PubMed  Google Scholar 

  51. Benton AL, Hamsher KdeS . Multilingual Aphasia Examination: Manual of Instructions. AJA: Iowa City, 1983.

    Google Scholar 

  52. Rey A . L'examen clinique en psychologie. Presses Universitaires de France: Paris, 1964.

    Google Scholar 

  53. White M . Interpreting inspection time as a measure of the speed of sensory processing. Pers Individ Dif 1964; 20: 351–363.

    Google Scholar 

  54. Oldfield RC . The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 1971; 9: 97–113.

    CAS  PubMed  Google Scholar 

  55. Reitan RM . Manual for Administration of Neuropsychological Test Batteries for Adults and Children. Neuropsychology Laboratory: Tucson, 1979.

    Google Scholar 

  56. Cloninger CR, Przybeck TR, Svrakić DM, Wetzel RD . The Temperament and Character Inventory (TCI): A Guide to Its Development and Use. Center for Psychobiology of Personality, Washington University: St Louis MO, 1994.

    Google Scholar 

  57. Raine A . The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr Bull 1991; 17: 555–564.

    CAS  PubMed  Google Scholar 

  58. Lazarsfeld PF, Henry NW . Latent Structure Analysis. Houghton Mifflin: Boston, 1968.

    Google Scholar 

  59. Manton KG, Korten A, Woodbury MA, Anker M, Jablensky A . Symptom profiles of psychiatric disorders based on graded disease classes: an illustration using data from the WHO International Pilot Study of Schizophrenia. Psychol Med 1994; 24: 133–144.

    CAS  PubMed  Google Scholar 

  60. Jablensky A, Woodbury MA . Dementia praecox and manic-depressive insanity in 1908: a Grade of Membership analysis of the Kraepelinian dichotomy. Eur Arch Psychiatry Clin Neurosci 1995; 245: 202–209.

    CAS  PubMed  Google Scholar 

  61. Corder EH, Woodbury MA . Genetic heterogeneity in Alzheimer's disease: a grade of membership analysis. Genet Epidemiol 1993; 10: 495–499.

    CAS  PubMed  Google Scholar 

  62. Corder EH, Woodbury MA, Manton KG, Field LL . Grade-of-membership sibpair linkage analysis maps IDDM11 to chromosome 14q24.3–q31. Ann Hum Genet 2001; 65: 387–394.

    CAS  PubMed  Google Scholar 

  63. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderson MA, Gusella JF . Use of cyclosporin A in establishing Epstein–Barr virus-transformed human lymphoblastoid cell lines. In Vitro 1984; 20: 856–858.

    CAS  PubMed  Google Scholar 

  65. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cook EH . Genetics of psychiatric disorders: Where have we been and where are we going? Am J Psychiatry 2000; 157: 1039–1040.

    PubMed  Google Scholar 

  68. Sawa A, Snyder SH . Schizophrenia: diverse approaches to a complex disease. Science 2002; 296: 692–695.

    CAS  PubMed  Google Scholar 

  69. Riley BP, McGuffin P . Linkage and associated studies of schizophrenia. Am J Med Genet 2000; 97: 23–44.

    CAS  PubMed  Google Scholar 

  70. Risch N . Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    CAS  PubMed  Google Scholar 

  72. Pulver AE, Bale SJ . Availability of schizophrenic patients and their families for genetic linkage studies: findings from the Maryland epidemiology sample. Genet Epidemiol 1989; 6: 671–680.

    CAS  PubMed  Google Scholar 

  73. Mortensen PB, Pedersen CB, Westergaard T, Wohlfahrt J, Ewald H, Mors O et al. Effects of family history and place and season of birth on the risk of schizophrenia. N Engl J Med 1999; 340: 603–608.

    CAS  PubMed  Google Scholar 

  74. Duggirala R, Williams JT, Williams-Blangero S, Blangero J . A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol 1997; 14: 987–992.

    CAS  PubMed  Google Scholar 

  75. Wijsman EM, Amos CI . Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 1997; 14: 719–735.

    CAS  PubMed  Google Scholar 

  76. Jiang C, Zeng ZB . Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995; 140: 1111–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Boomsma DI, Dolan CV . A comparison of power to detect a QTL in sib-pair data using multivariate phenotypes, mean phenotypes, and factor scores. Behav Genet 1998; 28: 329–340.

    CAS  PubMed  Google Scholar 

  78. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 1995; 11: 325–327.

    CAS  PubMed  Google Scholar 

  79. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosome 10p14–p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet 1998; 81: 302–307.

    CAS  PubMed  Google Scholar 

  80. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    CAS  PubMed  Google Scholar 

  81. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    CAS  PubMed  Google Scholar 

  82. Antonarakis SE, Blouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G et al. Schizophrenia susceptibility and chromosome 6p24–22. Nat Genet 1995; 11: 235–236.

    CAS  PubMed  Google Scholar 

  83. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1. Am J Med Genet 1994; 15: 36–43.

    Google Scholar 

  84. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    CAS  PubMed  Google Scholar 

  85. Hwu HG, Lin MW, Lee PC, Lee SF, Ou-Yang WC, Liu CM . Evaluation of linkage of markers on chromosome 6p with schizophrenia in Taiwanese families. Am J Med Genet 2000; 7: 74–78.

    Google Scholar 

  86. Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L et al. 6p24–22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet 1997; 74: 311–318.

    CAS  PubMed  Google Scholar 

  87. Wang S, Sun CE, Walczak CA, Ziegle JS, Kipps BR, Goldin LR et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet 1995; 10: 41–46.

    PubMed  Google Scholar 

  88. Wright P, Nimgaonkar VL, Donaldson PT, Murray RM . Schizophrenia and HLA: a review. Schizophrenia Res 2001; 47: 1–12.

    CAS  Google Scholar 

  89. Schwab SG, Hallmayer J, Freimann J, Lerer B, Albus M, Borrmann-Hassenbach M et al. Investigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia. Am J Med Genet 2002; 114: 315–320.

    PubMed  Google Scholar 

  90. Matsuzaka Y, Makino S, Nakajima K, Tomizawa M, Oka A, Bahram S et al. New polymorphic microsatellite markers in the human MHC class III region. Tissue Antigens 2001; 57: 397–404.

    CAS  PubMed  Google Scholar 

  91. Wei J, Hemmings GP . The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 2000; 25: 376–377.

    CAS  PubMed  Google Scholar 

  92. Fan JB, Tang JX, Gu NF, Feng GY, Zou FG, Xing YL et al. A family-based and case–control association study of the NOTCH4 gene and schizophrenia. Mol Psychiatry 2002; 7: 100–103.

    CAS  PubMed  Google Scholar 

  93. Imai K, Harada S, Kawanishi Y, Tachikawa H, Okubo T, Suzuki T . The (CTG)n polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals. BMC Psychiatry 2001; 1: 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sklar P, Schwab SG, Williams NM, Daly M, Schaffner S, Maier W et al. Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nat Genet 2001; 28: 126–128.

    CAS  PubMed  Google Scholar 

  95. McGinnis RE, Fox H, Yates P, Cameron LA, Barnes MR, Gray IC et al. Failure to confirm NOTCH4 association with schizophrenia in a large population-based sample from Scotland. Nat Genet 2001; 28: 128–129.

    CAS  PubMed  Google Scholar 

  96. Ujike H, Takehisa Y, Takaki M, Tanaka Y, Nakata K, Takeda T et al. NOTCH4 gene polymorphism and susceptibility to schizophrenia and schizoaffective disorder. Neurosci Lett 2001; 301: 41–44.

    CAS  PubMed  Google Scholar 

  97. Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M . Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 2001; 6: 79–82.

    CAS  PubMed  Google Scholar 

  98. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295: 2282–2285.

    CAS  PubMed  Google Scholar 

  99. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (NHMRC), Australia (grants 960579, 990701 and 129060) and the Graylands Hospital (Perth, Western Australia, Australia). The following individuals made specific contributions to study design, data collection, data analysis, and manuscript editing. Perth: J Box, JE Cooper, B Jansen, J Johnston, R Kaiser, V Morgan, R Stienstra, J Todd, D Vile, D Wood, and P Wynn Owen; Duke University, Durham, NC, USA: E Corder, J Wagner, K Manton. The cooperation of the clinical and administrative staff at Graylands Hospital, Perth, is gratefully acknowledged. We especially thank the patients, family members, and other volunteers who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Hallmayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallmayer, J., Jablensky, A., Michie, P. et al. Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia. Mol Psychiatry 8, 511–523 (2003). https://doi.org/10.1038/sj.mp.4001273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001273

Keywords

This article is cited by

Search

Quick links