Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Linkage of schizophrenia with chromosome 1q loci in Taiwanese families

Abstract

A positive linkage of schizophrenia with chromosome 1q loci has been reported in Caucasian patients. This study was designed to evaluate the linkage of schizophrenia with markers of the 1q22–44 region in 52 Taiwanese families with at least two affected siblings. In the region 1q22–31 (17.8 cM), marker D1S1679 had a maximal proportion (0.57, P=0.03) of shared identity by descent (IBD) under a narrow phenotype (DSM-IV schizophrenia only). In the region 1q42–44 (26.8 cM), the marker D1S251, located near the breakpoint of a balanced translocation t (1;11) (q42.1;q14.3) segregated with schizophrenia, and also near the neurodevelopment-related ‘Disrupted in Schizophrenia 1’ gene, had a maximum NPL score of 1.73 (P=0.03) under the narrow phenotype model and 2.18 (P=0.01) under the broad phenotype model comprised of schizophrenia, schizoaffective disorder, and other nonaffective psychotic disorders as defined by DSM-IV criteria. The marker D1S2836 also had a maximal proportion (0.57, P=0.05) of shared IBD under the broad model. These findings may provide guidance for positional cloning studies on candidate genes in the 1q22–31 and 1q41–44 regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. McGuffin P, Asherson P, Owen M, Farmer A . The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 1994; 164: 593–595.

    Article  CAS  PubMed  Google Scholar 

  2. Rish N . Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–228.

    Google Scholar 

  3. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS . Support for a possible schizophrenia vulnerability locus in region 5q22–31 in Irish families. Mol Psychiatry 1997; 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  4. Hovatta I, Varilo T, Suvisaari J, Terwilliger TD, Olikainen V, Arajarvi R et al. A genome-wide search for schizophrenia genes in an internal isolate of Finland suggesting multiple susceptibility loci. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 453–454.

    Google Scholar 

  5. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Olikainen V, Arajarvi R et al. A genome-wide search for schizophrenia genes in an isolated Finnish subpopulation suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD. et al Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  7. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  8. Millar JK, Christie S, Anderson S, Lawson D, Loh DH-W, Devon RS et al. Genomic structure and localization within a linkage hotspot of disrupted in schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    Article  CAS  PubMed  Google Scholar 

  9. Millar JK, Wilson-Annan JC, Anderson S, Cristie S, Taylor MS, Semple CAM et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  10. St Clair DM, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association with a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  11. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  12. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European–American schizophrenia pedigrees: results of the NIMH genetics initiative and millennium consortium. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 290–295.

    Article  CAS  Google Scholar 

  13. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH genetics initiative millennium schizophrenia consortium: linkage analysis of African-American pedigrees. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 282–289.

    Article  CAS  Google Scholar 

  14. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kriby A et al. Genomescan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  15. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet 1998; 81: 364–376.

    Article  CAS  PubMed  Google Scholar 

  16. Brzustowicz LM, Hodgkinson KA, Chow EWC, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong L-L, Ho T-H et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatry 1998; 3: 32–37.

    Article  CAS  PubMed  Google Scholar 

  19. Wittekindt O, Jauch A, Burgert E, Sharer L . The human small conductance-regulated potassium channel gene (hSKCa3) contains two CAG repeats in exon 1, is on chromosome 21.3, and shows possible association with schizophrenia. Neurogenetics 1998; 1: 259–265.

    Article  CAS  PubMed  Google Scholar 

  20. Morris AG, Gaitonde E, McKenna PJ, Mollon JD, Hunt D . CAG repeat expansion and schizophrenia: association with the disease in females and with early age of onset. Hum Mol Genet 1995; 4: 1957–1961.

    Article  CAS  PubMed  Google Scholar 

  21. O'Donovan MC, Guy C, Craddock N, Bowen T, McKeon P, Macedo A et al. Confirmation of association between expanded CAG/CTG repeats both in schizophrenia and bipolar disorder. Psychol Med 1996; 26: 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  22. Wittekindt O, Schwab SG, Burgert E, Knapp M, Albus M, Lever B et al. Association between hSCa3 and schizophrenic not confirmed by transmission disequilibria test in 193 offspring/parents trios. Mol Psychiatry 1999; 4: 267–270.

    Article  CAS  PubMed  Google Scholar 

  23. Cardno AG, Bowen T, Guy CA, Jones LA, McCarthy G, Williams NM et al. CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol Psychiatry 1999; 45: 1592–1596.

    Article  CAS  PubMed  Google Scholar 

  24. Speight G, Guy C, Bowen T, Asherson P, McGuffin P, Craddock N et al. Exclusion of CAG/CTG trinucleotide repeat loci which map to chromosome 4 in bipolar disorder and schizophrenia. Am J Med Genet (Neuropsychiatric Genet) 1997; 74: 204–206.

    Article  CAS  Google Scholar 

  25. Jones AL, Middle F, Guy C, Spurlock G, Cairns NJ, McGuffin P et al. No evidence for expanded polyglutamine in bipolar disorder and schizophrenia. Mol Psychiatry 1997; 2: 478–482.

    Article  CAS  PubMed  Google Scholar 

  26. Li T, Hu X, Chandy KG, Fantino E, Kalman K, Gutman G et al. Transmission disequilibrium analysis of a triplet repeat within the hSKCa3 gene using family trios with schizophrenia. Biochem Biophys Res Commun 1998; 251: 662–665.

    Article  CAS  PubMed  Google Scholar 

  27. Hawi Z, Mynett-Johnson L, Murphy V, Straub Kendler KS, Walsh D et al. No evidence to support the association of the potassium channel gene hSKCa3 CAG repeat with schizophrenia or bipolar disorder in the Irish population. Mol Psychiatry 1999; 4:488–491.

    Article  CAS  PubMed  Google Scholar 

  28. Meissner B, Purmann S, Schürmann M, Zuhlke C, Lencer R, Arolt V et al. hSKCa3: a candidate gene for schizophrenia? Psychiat Genet 1999; 9: 91–96.

    Article  CAS  Google Scholar 

  29. Hwu HG, Yang SY . Psychiatric diagnostic assessment: establishment and inter-rater reliability. Chin Psychiatry 1987; 2: 267–278.

    Google Scholar 

  30. Hwu HG . Psychiatric diagnostic assessment. In: Hwu HG (ed). Manual of Psychiatric Diagnosis, 2nd edn (printing 2). Publication Committee, College of Medicine, National Taiwan University: Taipei, 1999, pp 7–42.

    Google Scholar 

  31. American Psychiatric Association: Diagnostic and Statistical Manual, 4th edn, American Psychiatric Association: Washington, DC, 1994.

  32. Lahiri DK, Bye S, Nurnberger Jr JI, Hodes ME, Crisp M . A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods 1992; 25: 193–205.

    Article  CAS  PubMed  Google Scholar 

  33. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230: 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  34. Cottingham Jr RW, Idury RM, Schaffer AA . Faster sequential genetic linkage computations. Am J Hum Genet 1993; 53: 252–263.

    PubMed  PubMed Central  Google Scholar 

  35. O'Connel JR, Weeks ED . The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 1995; 11: 402–408.

    Article  Google Scholar 

  36. Kainulainen K, Perola M, Terwilliger JD, Kaprio J, Koskenvuo M, Syvanen AC et al. The rennin—angiotensin-system in essential hypertension: evidence for involvement of the angiotensin receptor type-I gene in Finnish patients. Hypertension 1999; 33: 844–849.

    Article  CAS  PubMed  Google Scholar 

  37. Durner M, Vieland VJ, Greenberg DA . Further evidence for the increased power of LOD scores compared with nonparametric methods. Am J Hum Genet 1999; 64: 281–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abreu PC, Greenberg SE, Hodge SE . Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 1999; 65: 847–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bierut LJ, Rice JP, Edenberg HJ, Goate A, Foroud T, Cloninger CR et al. Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking. Am J Med Genet (Neuropsychiatric Genet) 2000; 90: 299–302.

    Article  CAS  Google Scholar 

  40. Kruglyak L, Daly MJ, Reeve-Daly MR, Lander ES . Parametric and non-parametric analysis: an unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Clerget-Darpoux F, Bonaiti-pellie C, Hochez J . Effects of misspecifying genetic parameters in lod score analysis. Biometrics 1986; 42: 393–399.

    Article  CAS  PubMed  Google Scholar 

  42. Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajarvi R et al. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p, and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998; 3: 452–457.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999; 65: 876–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dror V, Shamir E, Ghanshani S, Kimhi R, Swartz M, Barak Y et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatry 1999; 4: 254–260.

    Article  CAS  PubMed  Google Scholar 

  45. Fananas L, Fuster R, Guillamt R, Miro R . Chromosomal fragile site 1q21 in schizophrenic patients. Am J Psychiatry 1997; 154: 716.

    CAS  PubMed  Google Scholar 

  46. Kosower NS, Gerad L, Goldstein M, Parasol N, Zipser Y, Ragolsky M et al. Constitutive heterochromatin of chromosome 1 and Duffy blood group alleles in schizophrenia. Am J Med Genet 1995; 60: 133–138.

    Article  CAS  PubMed  Google Scholar 

  47. Saha N, Tay JS, Tsoi WF, Kua EH . Association of Duffy blood group with schizophrenia in Chinese. Genet Epidemiol 1990; 7: 303–305.

    Article  CAS  PubMed  Google Scholar 

  48. Blackwood DHR, Fordyce A, Walker MT, Drysdale JK, St Clair DM, Porteous DJ et al. Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lantz VA, Miller KG . A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of drosophila embryos. J Cell Biol 1998; 140: 897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dillman JF, Dabney LP, Karki S, Paschal BM, Holzbaur EL, Pfister KK . Functional analysis of dynactin and cytoplasmic dynein slow axonal transport. J Neurosci 1996; 16: 6742–6752.

    Article  CAS  PubMed  Google Scholar 

  51. Ahmad FJ, Echeverri CJ, Vallee RB, Baas PW . Cytoplasmic dynein and dynactin are required for the transport of microtubules into axon. J Cell Biol 1998; 140: 391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang W, Vaazquez L, Apperson M, Kennedy MB . Citron binds to PSD-95 at glutamatergic synapse on inhibitory neurons in the hippocampus. J Neurosci 1999; 19: 96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuroda S, Nakagawa N, Tokunaga C, Tatematsu K, Tanizawa K . Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C ζ-interacting protein. J Cell Biol 1999; 144: 403–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagy JI, Proce ML, Staines WA, Lynn BD, Granholm AC . The hyaluronan receptor RHAMAM in noradrenergic fibers contributes to axon growth capacity of locus coeruleus neurons in an intraocular transplant model. Neuroscience 1998; 86: 241–255.

    Article  CAS  PubMed  Google Scholar 

  55. Dolnick BJ . Naturally occurring antisense RNA. Pharmacol Ther 1997; 75: 179–184.

    Article  CAS  PubMed  Google Scholar 

  56. Knee R, Murphy PR . Regulation of gene expression by natural antisense RNA transcripts. Neurochem Int 1997; 31: 379–392.

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi S, Takashima A, Anzai K . The dendritic translocation of translin protein in the form of BC1 RNA protein particles in developing rat hippocampal neurons in primary culture. Biochem Biophys Res Commun 1998; 253: 448–453.

    Article  CAS  PubMed  Google Scholar 

  58. Millar JK, Christie S, Semple CAM, Porteous DJ . Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1 a gene disrupted by a translocation segregating with schizophrenia. Genomics 2000; 67: 69–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Health Research Institute (DOH83, 84, 85, 86, 87, 88-HR-306; NHRI-GT-EX89P825P; NHRI-GT-EX908825PP; and NHRI-EX91-9113PP) and partly by grants from National Taiwan University Hospital (NTUH-88-A0015) and the National Science Council, Taiwan (NSC-83-0412-B-170-MO2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-G Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwu, HG., Liu, CM., Fann, CJ. et al. Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 8, 445–452 (2003). https://doi.org/10.1038/sj.mp.4001235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001235

Keywords

This article is cited by

Search

Quick links