Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Differences in neuroanatomical sites of apoD elevation discriminate between schizophrenia and bipolar disorder

Abstract

We previously demonstrated that apolipoprotein D (apoD) levels are elevated in the dorsolateral prefrontal cortex and caudate obtained postmortem from subjects with schizophrenia and bipolar disorder compared to controls, suggesting a focal compensatory response to neuropathology associated with psychiatric disorders. We have now extended those studies by measuring apoD protein levels in additional brain regions from post-mortem samples of schizophrenic and bipolar disorder subjects using an enzyme-linked immunosorbent assay. Increased apoD levels were observed in the lateral prefrontal cortex (Brodmann Area 46) in both schizophrenia (46%) and bipolar disorder (111%), and in the orbitofrontal cortex (Brodmann Area 11) (44.3 and 37.9% for schizophrenia and bipolar disorder, respectively). However, differences between the disease groups were observed in other brain regions. In subjects with schizophrenia, but not bipolar disorder, apoD levels were significantly elevated in the amygdala (42.8%) and thalamus (31.7%), while in bipolar disorder, but not schizophrenia, additional increases were detected in the parietal cortex (Brodmann Area 40; 123%) and the cingulate cortex (Brodmann Area 24; 57.7%). These data demonstrate that there is anatomical overlap in the pathophysiologies of schizophrenia and bipolar disorder, as well as areas of pathology that distinguish the two disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. McConathy WJ, Alaupovic P . Isolation and partial characterization of apolipoprotein D: a new protein moiety of the human plasma lipoprotein system. FEBS Lett 1973; 37: 178–182.

    Article  CAS  Google Scholar 

  2. Drayna D, Fielding C, McLean J, Baer B, Castro G, Chen E et al. Cloning and expression of human apolipoprotein D cDNA. J Biol Chem 1986; 261.

  3. Vogt M, Skerra A . Bacterially produced apolipoprotein D binds progesterone and arachidonic acid, but not bilirubin or E-3M2H. J Mol Recognition 2001; 14: 79–86.

    Article  CAS  Google Scholar 

  4. Morais-Cabral JH, Atkins GL, Sanchez LM, Lopez-Boado YS, Lopez-Otin C, Sawyer L . Arachidonic acid binds to apoliprotein D: implications for the protein's function. FEBS Lett 1995; 366: 53–56.

    Article  CAS  Google Scholar 

  5. Dilley WG, Haagensen DE, Cox CE, Wells SA . Immunologic and steroid binding properties of CDFP-24 protein isolated from human breast gross cystic disease fluid. Breast Cancer Res Treat 1990; 16: 253–260.

    Article  CAS  Google Scholar 

  6. Lea OA . Binding properties of progesterone-binding cyst protein PBCP. Steroids 1988; 52: 337–338.

    Article  CAS  Google Scholar 

  7. Zeng C, Spielman AI, Vowels BR, Leyden JJ, Biemann K, Preti G . A human axillary odorant is carried by apolipoprotein D. Proc Natl Acad Sci USA 1996; 93: 6626–30.

  8. Ong WY, He Y, Suresh S, Patel SC . Differential expression of apoliprotein D and apoliprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 1997; 79: 359–367.

    Article  CAS  Google Scholar 

  9. Montpied P, de Bock F, Lerner-Natoli M, Bockaert J, Rondouin G . Hippocampal alterations of apolipoprotein E and D mRNA levels in vivo and in vitro following kainate excitotoxicity. Epilepsy Res 1999; 35: 135–146.

    Article  CAS  Google Scholar 

  10. Franz G, Reindl M, Patel SC, Beer R, Unterrichter I, Berger T et al. Increased expression of apolipoprotein D following experimental traumatic brain injury. J Neurochem 1999; 73: 1615–1625.

    Article  CAS  Google Scholar 

  11. Yoshida K, Cleaveland ES, Nagle JW, French S, Yaswen L, Ohshima T et al. Molecular cloning of the mouse apolipoprotein D gene and its upregulated expression in Niemann–Pick disease type C mouse model. DNA Cell Biol 1996; 15: 873–882.

    Article  CAS  Google Scholar 

  12. Suresh S, Yan Z, Patel RC, Patel YC, Patel SC . Cellular cholesterol storage in the Niemann–Pick disease type C mouse is associated with increased expression and defective processing of apolipoprotein D. J Neurochem 1998; 70: 242–251.

    Article  CAS  Google Scholar 

  13. Terrisse L, Poirier J, Bertrand P, Merched A, Visvikis S, Siest G et al. Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer's patients. J Neurochem 1998; 71: 1643–1650.

    Article  CAS  Google Scholar 

  14. Kalman J, McConathy W, Araoz C, Kasa P, Lacko A . Apolipoprotein D in the aging brain and in Alzheimer's dementia. Neurol Res 2000; 22: 330–336.

    Article  CAS  Google Scholar 

  15. Belloir B, Kovari E, Surini-Demiri M, Savioz A . Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J Neurosci Res 2001; 64: 61–69.

    Article  CAS  Google Scholar 

  16. Reindl M, Knipping G, Wicher I, Dilitz E, Egg R, Deisenhammer F et al. Increased intrathecal production of apolipoproten D in multiple sclerosis. J Neuroimmunol 2001; 119: 327–332.

    Article  CAS  Google Scholar 

  17. Thomas EA, Dean B, Pavey G, Sutcliffe JG . Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA 2001; 98: 4066–4071.

    Article  CAS  Google Scholar 

  18. Diagnostic and Statistical Manual of Mental Disorders, IV, 4th edn. American Psychiatric Association: Washington, D C, 1994.

  19. Keks NA, Hill C, Opeskin K, Copolov DL, Dean B . Psychiatric diagnosis after death: the problems of accurate diagnosis from the case history review and relative interviews. In: DB, Kleinman JE, Hyde TM (eds). Using CNS Tissue in Psychiatric Research. Harwood Academic Press: Amsterdam, 1999, pp 19–37.

    Google Scholar 

  20. Berrettini WH . Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 2000; 48: 531–538.

    Article  CAS  Google Scholar 

  21. Bunney WE, Bunney BG . Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev 2000; 31: 138–146.

    Article  CAS  Google Scholar 

  22. Goldman-Rakic PS, Seleman LD . Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458.

    Article  CAS  Google Scholar 

  23. Franzen G, Ingvar DH . Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 1975; 38: 1027–1032.

    Article  CAS  Google Scholar 

  24. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–134.

    Article  CAS  Google Scholar 

  25. Berman KF, Weinberger DR . The prefrontal cortex in schizophrenia and other neuropsychiatric diseases: in vivo physiological correlates of cognitive deficits. Prog Brain Res 1990; 85: 521–536.

    Article  CAS  Google Scholar 

  26. Liddle PF, Morris DL . Schizophrenia syndromes and frontal lobe performance. Br J Psychiatry 1991; 158: 340–345.

    Article  CAS  Google Scholar 

  27. Drevets WC, Ongur D, Price JL . Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 1998; 3: 220–226.

    Article  CAS  Google Scholar 

  28. Knable MB . Schizophrenia and bipolar disorder: findings from studies of the Stanley Foundation Brain Collection. Schizophr Res 1999; 39: 149–152.

    Article  CAS  Google Scholar 

  29. Freedman M, Black S, Ebert P, Binns M . Orbitofrontal function, object alternation and perseveration. Cereb Cortex 1998; 8: 18–27.

    Article  CAS  Google Scholar 

  30. Crespo-Facorro B, Kim J, Andreasen NC, O'Leary DS, Magnotta V . Regional frontal abnormalities in schizophrenia: a quantitative gray matter volume and cortical surface size study. Biol Psychiatry 2000; 48: 110–119.

    Article  CAS  Google Scholar 

  31. Baare WF, Hulshoff Pol HE, Hijman R, Mali WP, Viergever MA, Kahn RS . Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol Psychiatry 1999; 45: 1597–1605.

    Article  CAS  Google Scholar 

  32. Blumberg HP, Stern E, Ricketts S, Martinez D, de Asis J, White T et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999; 156: 1986–1988.

    CAS  Google Scholar 

  33. Joseph R . Frontal lobe psychopathology: mania, depression, confabulation, catatonia, perseveration, obsessive compulsions, and schizophrenia. Psychiatry 1999; 62: 138–172.

    Article  CAS  Google Scholar 

  34. Yudofsky SC, Hales RE . The American Psychiatric Press Textbook of Neuropsychiatry, 3rd edn. American Psychiatric Press: Washington, DC, 1997.

    Google Scholar 

  35. Barr WB . Schizophrenia and attention deficit disorder. Two complex disorders of attention. Ann N Y Acad Sci 2001; 931: 239–250.

    Article  CAS  Google Scholar 

  36. Pliszka SR . Comorbidity of attention-deficit/hyperactivity disorder with psychiatric disorder: an overview. J Clin Psychiatry 1998; 7: 50–58.

    Google Scholar 

  37. Eastwood SL, Harrison PJ . Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001; 55: 569–578.

    Article  CAS  Google Scholar 

  38. Benes FM, Vincent SL, Todtenkopf M . The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 2001; 50: 395–406.

    Article  CAS  Google Scholar 

  39. Buchsbaum MS, Someya T, Teng CY, Abel L, Chin S, Najafi A et al. PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 1996; 153: 191–199.

    Article  CAS  Google Scholar 

  40. Andreasen NC, Flashman L, Flaum M, Arndt S, Swayze Vn, O'Leary DS et al. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 1994; 272: 1763–1769.

    Article  CAS  Google Scholar 

  41. Thune JJ, Pakkenberg B . Stereological studies of the schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 200–204.

    Article  CAS  Google Scholar 

  42. Aggleton JP . The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 1993; 16: 328–333.

    Article  CAS  Google Scholar 

  43. Fudge JL, Powers JM, Haber SN, Caine ED . Considering the role of the amygdala in psychotic illness: a clinicopathological correlation. J Neuropsychiatry Clin Neurosci 1998; 10: 383–394.

    Article  CAS  Google Scholar 

  44. Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK . Mapping of grey matter changes in schizophrenia. Schizophr Res 1999; 35: 1–14.

    Article  CAS  Google Scholar 

  45. Tamminga CA, Vogel M, Gao X, Lahti AC, Holcomb HH . The limbic cortex in schizophrenia: focus on the anterior cingulate. Brain Res Brain Res Rev 2000; 31: 364–370.

    Article  CAS  Google Scholar 

  46. Cotter D, Mackay D, Landau S, Kerwin R, Everall I . Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 2001; 58: 545–553.

    Article  CAS  Google Scholar 

  47. Carter CS, Mintun M, Nichols T, Cohen JD . Anterior cinuglate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 1997; 154: 1670–1675.

    Article  CAS  Google Scholar 

  48. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  Google Scholar 

  49. Thomas EA, Danielson PE, Nelson PA, Pribyl TM, Hilbush BS, Hasel KW et al. Clozapine increases apolipoprotein D expression in rodent brain: towards a mechanism for neuroleptic pharmacotherapy. J Neurochem 2001; 76: 789–796.

    Article  CAS  Google Scholar 

  50. Thomas EA, Sautkulis LN, Criado JR, Games D, Sutcliffe JG . Apolipoprotein D mRNA expression is elevated in PDAPP transgenic mice. J Neurochem 2001; 79: 1059–1064.

    Article  CAS  Google Scholar 

  51. Lechner M, Wojnar P, Redl B . Human tear lipocalin acts as an oxidative-stress-induced scavenger of potentially harmful lipid peroxidation products in a cell culture system. Biochem J 2001; 356: 129–135.

    Article  CAS  Google Scholar 

  52. Yao JK, Reddy RD, van Kammen DP . Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 2001; 15: 287–310.

    Article  CAS  Google Scholar 

  53. Horrobin DF, Bennet CN . New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 141–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grant GM32355, NHMRC Grant 193299 and Digital Gene Technologies. We thank Geoffrey Pavey for neuroanatomical dissections. We thank Nicholas Keks and Christine Hill for case-history review and subsequent diagnosis of the schizophrenic and bipolar subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J G Sutcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E., Dean, B., Scarr, E. et al. Differences in neuroanatomical sites of apoD elevation discriminate between schizophrenia and bipolar disorder. Mol Psychiatry 8, 167–175 (2003). https://doi.org/10.1038/sj.mp.4001223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001223

Keywords

This article is cited by

Search

Quick links