Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Neuronal overexpression of ‘readthrough’ acetylcholinesterase is associated with antisense-suppressible behavioral impairments

Abstract

Molecular origin(s) of the diverse behavioral responses to anticholinesterases were explored in behaviorally impaired transgenic (Tg) FVB/N mice expressing synaptic human acetylcholinesterase (hAChE-S). Untreated hAChE-S Tg, unlike naïve FVB/N mice, presented variably intense neuronal overexpression of the alternatively spliced, stress-induced mouse ‘readthrough’ mAChE-R mRNA. Both strains displayed similar diurnal patterns of locomotor activity that were impaired 3 days after a day-to-night switch. However, hAChE-S Tg, but not FVB/N mice responded to the circadian switch with irregular, diverse bursts of increased locomotor activity. In social recognition tests, controls displayed short-term recognition, reflected by decreased exploration of a familiar, compared to a novel juvenile conspecific as well as inverse correlation between social recognition and cortical and hippocampal AChE specific activities. In contrast, transgenics presented poor recognition, retrievable by tetrahydroaminoacridine (tacrine, 1.5 mg kg−1). Tacrine's effect was short-lived (<40 min), suggesting its effect was overcome by anticholinesterase-induced overproduction of mache-r. consistent with this hypothesis, antisense oligonucleotides (two daily intracerebroventricular injections of 25 ng) arrested mache-r synthesis, selectively reduced mache-r levels and afforded an extended (>24 h) suppression of the abnormal social recognition pattern in transgenics. Efficacy of antisense treatment was directly correlated with AChE-R levels and the severity of the impaired phenotype, being most apparent in transgenics presenting highly abnormal pre-treatment behavior. These findings demonstrate that neuronal AChE-R overproduction is involved in various behavioral impairments and anticholinesterase responses, and point to the antisense strategy as a potential approach for re-establishing cholinergic balance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Carlson NR . Physiology of Behavior Allyn and Bacon: Needham Heights, MA 1994

    Google Scholar 

  2. Cummings JL, Back C . The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer's disease Am J Geriatr Psychiatry 1998; 6: S64–S78

    Article  CAS  Google Scholar 

  3. Giacobini E . Present and future of Alzheimer therapy J Neural Transm Suppl 2000; 59: 231–242

    CAS  PubMed  Google Scholar 

  4. Kaufer D, Friedman A, Seidman S, Soreq H . Acute stress facilitates long-lasting changes in cholinergic gene expression Nature 1998; 393: 373–377

    Article  CAS  Google Scholar 

  5. Xie J, McCobb DP . Control of alternative splicing of potassium channels by stress hormones Science 1998; 280: 443–446

    Article  CAS  Google Scholar 

  6. Kaufer D, Soreq H . Tracking cholinergic pathways from psychological and chemical stressors to variable neurodeterioration paradigms Curr Opin Neurol 1999; 12: 739–743

    Article  CAS  Google Scholar 

  7. Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H . Structural roles of acetylcholinesterase variants in biology and pathology Eur J Biochem 1999; 264: 672–686

    Article  CAS  Google Scholar 

  8. Sternfeld M, Shoham S, Klein R, Flores-Flores C, Evron T, Idelson GH et al. Excess ‘readthrough’ acetylcholinesterase attenuates but the ‘synaptic’ variant intensifies neurodeterioration correlates Proc Natl Acad Sci USA 2000; 97: 8647–8652

    Article  CAS  Google Scholar 

  9. Beeri R, Andres C, Lev-Lehman E, Timberg R, Huberman T, Shani M, Soreq H . Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice Curr Biol 1995; 5: 1063–1071

    Article  CAS  Google Scholar 

  10. Beeri R, Le Novere N, Mervis R, Huberman T, Grauer E, Changeux JP, Soreq H . Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice J Neurochem 1997; 69: 2441–2451

    Article  CAS  Google Scholar 

  11. Erb C, Troost J, Kopf S, Schmitt U, Loffelholz K, Soreq H, Klein J . Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase J Neurochem 2001; 77: 638–646

    Article  CAS  Google Scholar 

  12. Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D et al. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases Hum Mol Genet 2000; 9: 1273–1281

    Article  CAS  Google Scholar 

  13. Suer C, Dolu N, Ozesmi C, Yilmaz A, Sahin O . Effect of reversed light-dark cycle on skin conductance in male rats Percept Mot Skills 1998; 87: 1267–1274

    Article  CAS  Google Scholar 

  14. Thor DH, Holloway WR . Social memory of the male laboratory rat J Comp Psychol 1982; 96: 1000–1006

    Article  Google Scholar 

  15. Shohami E, Kaufer D, Chen Y, Seidman S, Cohen O, Ginzberg D et al. Antisense prevention of neuronal damages following head injury in mice J Mol Med 2000; 78: 228–236

    Article  CAS  Google Scholar 

  16. Yirmiya R, Barak O, Avitsur R, Gallily R, Weidenfeld J . Intracerebral administration of Mycoplasma fermentans produces sickness behavior: role of prostaglandins Brain Res 1997; 749: 71–81

    Article  CAS  Google Scholar 

  17. Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H . Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini J Neurosci 1998; 18: 1240–1249

    Article  CAS  Google Scholar 

  18. Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE . Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vivo shows opposite responses to corticosterone in the hippocampus Endocrinology 1994; 135: 1928–1933

    Article  CAS  Google Scholar 

  19. Sirevaag AM, Black JE, Greenough WT . Astrocyte hypertrophy in the dentate gyrus of young male rats reflects variation of individual stress rather than group environmental complexity manipulations Exp Neurol 1991; 111: 74–79

    Article  CAS  Google Scholar 

  20. McEwen BS, Sapolsky RM . Stress and cognitive function Curr Opin Neurobiol 1995; 5: 205–216

    Article  CAS  Google Scholar 

  21. Hillegaart V, Ahlenius S . Time course for synchronization of spontaneous locomotor activity in the rat following reversal of the daylight (12:12 h) cycle Physiol Behav 1994; 55: 73–75

    Article  CAS  Google Scholar 

  22. Winslow JT, Camacho F . Cholinergic modulation of a decrement in social investigation following repeated contacts between mice Psychopharmacology (Berl) 1995; 121: 164–172

    Article  CAS  Google Scholar 

  23. Gheusi G, Bluthe RM, Goodall G, Dantzer R . Ethological study of the effects of tetrahydroaminoacridine (THA) on social recognition in rats Psychopharmacology (Berl) 1994; 114: 644–650

    Article  CAS  Google Scholar 

  24. Shannon HE, Peters SC . A comparison of the effects of cholinergic and dopaminergic agents on scopolamine-induced hyperactivity in mice J Pharmacol Exp Ther 1990; 255: 549–553

    CAS  PubMed  Google Scholar 

  25. Andres C, Beeri R, Friedman A, Lev-Lehman E, Henis S, Timberg R et al. Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin Iß gene expression followed by late-onset neuromotor deterioration Proc Natl Acad Sci U S A 1997; 94: 8173–8178

    Article  CAS  Google Scholar 

  26. Murata J, Matsukawa K, Shimizu J, Matsumoto M, Wada T, Ninomiya I . Effects of mental stress on cardiac and motor rhythms J Auton Nerv Syst 1999; 75: 32–37

    Article  CAS  Google Scholar 

  27. Perio A, Terranova JP, Worms P, Bluthe RM, Dantzer R, Biziere K . Specific modulation of social memory in rats by cholinomimetic and nootropic drugs, by benzodiazepine inverse agonists, but not by psychostimulants Psychopharmacology 1989; 97: 262–268

    Article  CAS  Google Scholar 

  28. Bluthe RM, Schoenen J, Dantzer R . Androgen-dependent vasopressinergic neurons are involved in social recognition in rats Brain Res 1990; 519: 150–157

    Article  CAS  Google Scholar 

  29. Sekiguchi R, Wolterink G . van Ree JM. Short duration of retroactive facilitation of social recognition in rats Physiol Behav 1991; 50: 1253–1256

    Article  CAS  Google Scholar 

  30. Soreq H, Seidman S . Acetylcholinesterase—new roles for an old actor Nat Rev Neurosci 2001; 2: 294–302

    Article  CAS  Google Scholar 

  31. Fibiger HC, Damsma G, Day JC . Behavioral pharmacology and biochemistry of central cholinergic neurotransmission Adv Exp Med Biol 1991; 295: 399–414

    Article  CAS  Google Scholar 

  32. Kramer TH, Buckhout R, Fox P, Widman E et al. Effects of stress on recall Appl Cog Psychol 1991; 5: 483–488

    Article  Google Scholar 

  33. Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA . Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder J Neuroendocrinol 1999; 11: 11–17

    Article  CAS  Google Scholar 

  34. Kaneto H . Learning/memory processes under stress conditions Behav Brain Res 1997; 83: 71–74

    Article  CAS  Google Scholar 

  35. Weiner MF, Vobach S, Olsson K, Svetlik D, Risser RC . Cortisol secretion and Alzheimer's disease progression Biol Psychiatry 1997; 42: 1030–1038

    Article  CAS  Google Scholar 

  36. Habib KE, Weld KP, Rice KC, Pushkas J, Champoux M, Listwak S et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates Proc Natl Acad Sci U S A 2000; 97: 6079–6084

    Article  CAS  Google Scholar 

  37. Grisaru D, Deutsch V, Shapira M, Pick M, Sternfeld M, Melamed-Book N et al. ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities Mol Med 2001; 7: 93–105

    Article  CAS  Google Scholar 

  38. Diamond DM, Fleshner M, Ingersoll N, Rose GM . Psychological stress impairs spatial working memory: relevance to electrophysiological studies of hippocampal function Behav Neurosci 1996; 110: 661–672

    Article  CAS  Google Scholar 

  39. de Quervain DJ, Roozendaal B, McGaugh JL . Stress and glucocorticoids impair retrieval of long-term spatial memory Nature 1998; 394: 787–790

    Article  CAS  Google Scholar 

  40. Cenci MA, Kalen P, Mandel RJ, Bjorklund A . Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat Brain Res 1992; 581: 217–228

    Article  CAS  Google Scholar 

  41. Cabib S, Puglisi-Allegra S . Stress, depression and the mesolimbic dopamine system Psychopharmacology (Berl) 1996; 128: 331–342

    Article  CAS  Google Scholar 

  42. Deutch AY, Lee MC, Gillham MH, Cameron DA, Goldstein M, Iadarola MJ . Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex Cereb Cortex 1991; 1: 273–292

    Article  CAS  Google Scholar 

  43. Lipska BK, Chrapusta SJ, Egan MF, Weinberger DR . Neonatal excitotoxic ventral hippocampal damage alters dopamine response to mild repeated stress and to chronic haloperidol Synapse 1995; 20: 125–130

    Article  CAS  Google Scholar 

  44. Kaufer D, Friedman A, Seidman S, Soreq H . Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission Chem Biol Interact 1999; 119–120: 349–360

    Article  Google Scholar 

  45. Nordberg A, Hellstrom-Lindahl E, Almkvist O, Meurling L . Activity of acetylcholinesterase in CSF increases in Alzheimer's patients after treatment with tacrine Alzheimer's Reports 1999; 2: 347–352

    Google Scholar 

  46. Coyle JT, Price DL, DeLong MR . Alzheimer's disease: a disorder of cortical cholinergic innervation Science 1983; 219: 1184–1190

    Article  CAS  Google Scholar 

  47. Seidman S, Eckstein F, Grifman M, Soreq H . Antisense technologies have a future fighting neurodegenerative diseases Antisense Nucleic Acid Drug Dev 1999; 9: 333–340

    Article  CAS  Google Scholar 

  48. Galyam N, Grisaru D, Grifman M, Melamed-Book N, Eckstein F, Seidman S et al. Complex host cell responses to antisense suppression of ACHE gene expression Antisense Nucleic Acid Drug Dev 2001; 11: 51–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Konrad Löffelholz and Drs Franz-Josef van der Staay (Germany), Menno Pieter Gerkema (The Netherlands) and David Glick (Israel) for discussions and help with experiments. This study was supported by the US-Israel Binational Science Foundation (1999/115), the US Army Medical Research and Development Command (DAMD 17–99–1-9547) and Ester Neuroscience (to HS). We are particularly grateful to the journal's reviewers for their instructive and generous comments and help. RY and HS are members of the Eric Roland Center for Neurodegenerative Diseases of The Hebrew University of Jerusalem. CE was the incumbent of a post-doctoral fellowship from the Minerva Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Yirmiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, O., Erb, C., Ginzberg, D. et al. Neuronal overexpression of ‘readthrough’ acetylcholinesterase is associated with antisense-suppressible behavioral impairments. Mol Psychiatry 7, 874–885 (2002). https://doi.org/10.1038/sj.mp.4001103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001103

Keywords

This article is cited by

Search

Quick links