Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors—implications for models of schizophrenia

Abstract

Ketamine and PCP are commonly used as selective NMDA receptor antagonists to model the putative hypoglutamate state of schizophrenia and to test new antipsychotics. Recent findings question the NMDA receptor selectivity of these agents. To examine this further, we measured the affinity of ketamine and PCP for the high-affinity states of the dopamine D2 and serotonin 5-HT2 receptor and found that ketamine shows very similar affinity at the NMDA receptor and D2 sites with a slightly lower affinity for 5-HT2 (0.5 μM, 0.5 μM and 15 μM respectively), while PCP shows similar affinity for the NMDA and 5-HT2 sites, with a slightly lower affinity for the D2 site (2 μM, 5 μM and 37 μM respectively). Further, ketamine and PCP in clinically relevant doses caused a significant increase in the incorporation of [35S]GTP-γ-S binding in CHO-cells expressing D2 receptors, which was prevented by raclopride, suggesting a partial agonist effect at the D2 receptor. Thus, ketamine and PCP may not produce a selective hypoglutamate state, but more likely produce a non-selective multi-system neurochemical perturbation via direct and indirect effects. These findings confound the inferences one can draw from the ketamine/PCP models of schizophrenia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Laruelle M, Abi-Dargham A . Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies J Psychopharmacol 1999; 13: 358–371

    CAS  Article  Google Scholar 

  2. Seeman P, Kapur S . Schizophrenia: more dopamine, more D2 receptors Proc Natl Acad Sci U S A 2000; 97: 7673–7675

    CAS  Article  Google Scholar 

  3. Kapur S, Seeman P . Does fast dissociation from the dopamine D2 receptors explain atypical antipsychotic action—a new hypothesis Am J Psychiatry 2001; 158: 360–369

    CAS  Article  Google Scholar 

  4. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B . Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia Neurosci Lett 1980; 20: 379–382

    CAS  Article  Google Scholar 

  5. Carlsson M, Carlsson A . Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson's disease Trends Neurosci 1990; 13: 272–276

    CAS  Article  Google Scholar 

  6. Carlsson A, Waters N, Waters S, Carlsson ML . Network interactions in schizophrenia—therapeutic implications Brain Res Brain Res Rev 2000; 31: 342–349

    CAS  Article  Google Scholar 

  7. Javitt DC . Glutamate receptors and schizophrenia: opportunities and caveats Mol Psychiatry 1996; 1: 16–17

    CAS  PubMed  Google Scholar 

  8. Jentsch JD, Roth RH . The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia Neuropsychopharmacology 1999; 20: 201–225

    CAS  Article  Google Scholar 

  9. Swerdlow NR, Braff DL, Bakshi VP, Geyer MA . An animal model of sensorimotor gating deficits in schizophrenia predicts antipsychotic drug action In: Csernansky JG (ed) Antipsychotics Heidelberger Platz 3/W-1000 Berlin 33/Germany: Springer-Verlag: Berlin 1996; pp 289–312

    Google Scholar 

  10. Kari HP, Davidson PP, Kohl HH, Kochhar MM . Effects of ketamine on brain monoamine levels in rats Res Commun Chem Pathol Pharmacol 1978; 20: 475–488

    CAS  PubMed  Google Scholar 

  11. Glisson SN, el-Etr AA, Bloor BC . The effect of ketamine upon norepinephrine and dopamine levels in rabbit brain parts Naunyn Schmiedebergs Arch Pharmacol 1976; 295: 149–152

    CAS  Article  Google Scholar 

  12. Tsukada H, Harada N, Nishiyama S, Ohba H, Sato K, Fukumoto D et al. Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis Synapse 2000; 37: 95–103

    CAS  Article  Google Scholar 

  13. Nabeshima T, Ishikawa K, Yamaguchi K, Furukawa H, Kameyama T . Protection with phencyclidine against inactivation of 5-HT2 receptors by sulfhydryl-modifying reagents Biochem Pharmacol 1988; 37: 3277–3283

    CAS  Article  Google Scholar 

  14. Rothman RB . PCP site 2: a high affinity MK-801-insensitive phencyclidine binding site Neurotoxicol Teratol 1994; 16: 343–353

    CAS  Article  Google Scholar 

  15. Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S et al. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells Anesthesiology 1998; 88: 768–774

    CAS  Article  Google Scholar 

  16. George SR, Watanabe M, Di Paolo T, Falardeau P, Labrie F, Seeman P . The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form Endocrinology 1985; 117: 690–697

    CAS  Article  Google Scholar 

  17. Seeman P, Ulpian C, Wreggett KA, Wells JW . Dopamine receptor parameters detected by [3H]spiperone depend on tissue concentration: analysis and examples J Neurochem 1984; 43: 221–235

    CAS  Article  Google Scholar 

  18. Liu IS, George SR, Seeman P . The human dopamine D2(Longer) receptor has a high-affinity state and inhibits adenylyl cyclase Brain Res Mol Brain Res 2000; 77: 281–284

    CAS  Article  Google Scholar 

  19. Malmberg A, Mohell N . Characterization of [3H]quinpirole binding to human dopamine D2A and D3 receptors: effects of ions and guanine nucleotides J Pharmacol Exp Ther 1995; 274: 790–797

    CAS  PubMed  Google Scholar 

  20. MacKenzie RG, VanLeeuwen D, Pugsley TA, Shih YH, Demattos S, Tang L et al. Characterization of the human dopamine D3 receptor expressed in transfected cell lines Eur J Pharmacol 1994; 266: 79–85

    CAS  Article  Google Scholar 

  21. Watanabe M, George SR, Seeman P . Dependence of dopamine receptor conversion from agonist high- to low-affinity state on temperature and sodium ions Biochem Pharmacol 1985; 34: 2459–2463

    CAS  Article  Google Scholar 

  22. Lefkowitz RJ, Cotecchia S, Samama P, Costa T . Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins Trends Pharmacol Sci 1993; 14: 303–307

    CAS  Article  Google Scholar 

  23. Gardner B, Strange PG . Agonist action at D2(long) dopamine receptors: ligand binding and functional assays Br J Pharmacol 1998; 124: 978–984

    CAS  Article  Google Scholar 

  24. Kapur S, Seeman P . Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D2 receptor Biol Psychiatry 2001; 49: 954–957

    CAS  Article  Google Scholar 

  25. Nishimura M, Sato K . Ketamine stereoselectively inhibits rat dopamine transporter Neurosci Lett 1999; 274: 131–134

    CAS  Article  Google Scholar 

  26. Martin DC, Introna RP, Aronstam RS . Inhibition of neuronal 5-HT uptake by ketamine, but not halothane, involves disruption of substrate recognition by the transporter Neurosci Lett 1990; 112: 99–103

    CAS  Article  Google Scholar 

  27. Martin DC, Adams RJ, Watkins CA . Inhibition of synaptosomal serotonin uptake by Ketalar Res Commun Chem Pathol Pharmacol 1988; 62: 129–132

    CAS  PubMed  Google Scholar 

  28. Bowdle TA, Radant AD, Cowley DS, Kharasch ED, Strassman RJ, Roy-Byrne PP . Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations Anesthesiology 1998; 88: 82–88

    CAS  Article  Google Scholar 

  29. Geisslinger G, Hering W, Thomann P, Knoll R, Kamp HD, Brune K . Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method Br J Anaesth 1993; 70: 666–671

    CAS  Article  Google Scholar 

  30. Domino EF, Zsigmond EK, Domino LE, Domino KE, Kothary SP, Domino SE . Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay Anesth Analg 1982; 61: 87–92

    CAS  Article  Google Scholar 

  31. Idvall J, Ahlgren I, Aronsen KR, Stenberg P . Ketamine infusions: pharmacokinetics and clinical effects Br J Anaesth 1979; 51: 1167–1173

    CAS  Article  Google Scholar 

  32. Shimoyama M, Shimoyama N, Gorman AL, Elliott KJ, Inturrisi CE . Oral ketamine is antinociceptive in the rat formalin test: role of the metabolite, norketamine Pain 1999; 81: 85–93

    CAS  Article  Google Scholar 

  33. Tamminga CA . Schizophrenia and glutamatergic transmission Crit Rev Neurobiol 1998; 12: 21–36

    CAS  Article  Google Scholar 

  34. Carlsson M, Carlsson A . Schizophrenia: a subcortical neurotransmitter imbalance syndrome? [Review] Schizophr Bull 1990; 16: 425–432

    CAS  Article  Google Scholar 

  35. Hirota K, Okawa H, Appadu BL, Grandy DK, Devi LA, Lambert DG . Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells Anesthesiology 1999; 90: 174–182

    CAS  Article  Google Scholar 

  36. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats Science 1998; 281: 1349–1352

    CAS  Article  Google Scholar 

  37. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex J Neurosci 1997; 17: 2921–2927

    CAS  Article  Google Scholar 

  38. Swerdlow NR, Geyer MA . Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia Schizophr Bull 1998; 24: 285–301

    CAS  Article  Google Scholar 

  39. Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA . Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats Psychopharmacol (Berl) 1998; 140: 75–80

    CAS  Article  Google Scholar 

  40. Verma A, Kulkarni SK . Modulation of MK-801 response by dopaminergic agents in mice Psychopharmacology 1992; 107: 431–436

    CAS  Article  Google Scholar 

  41. Giannini AJ, Eighan MS, Loiselle RH, Giannini MC . Comparison of haloperidol and chlorpromazine in the treatment of phencyclidine psychosis J Clin Pharmacol 1984; 24: 202–204

    CAS  Article  Google Scholar 

  42. Giannini AJ, Nageotte C, Loiselle RH, Malone DA, Price WA . Comparison of chlorpromazine, haloperidol and pimozide in the treatment of phencyclidine psychosis: DA-2 receptor specificity J Toxicol Clin Toxicol 1984; 22: 573–579

    CAS  Article  Google Scholar 

  43. Giannini AJ, Price WA, Loiselle RH, Malone DW . Treatment of phenylcyclohexylpyrrolidine (PHP) psychosis with haloperidol J Toxicol Clin Toxicol 1985; 23: 185–189

    CAS  Article  Google Scholar 

  44. Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J et al. Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat Eur J Neurosci 1999; 11: 4419–4432

    CAS  Article  Google Scholar 

  45. Geddes J, Freemantle N, Harrison P, Bebbington P . Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis BMJ 2000; 321: 1371–1376

    CAS  Article  Google Scholar 

  46. Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M . Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats Biol Psychiatry 1999; 46: 832–838

    CAS  Article  Google Scholar 

  47. Carlsson ML . The selective 5-HT2a receptor antagonist MDL 100,907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse—implications for psychosis J Neural Transm—Gen Sect 1995; 100: 225–237

    CAS  Article  Google Scholar 

  48. Arvanov VL, Wang RY . M100907, a selective 5-HT2A receptor antagonist and a potential antipsychotic drug, facilitates N-methyl-D-aspartate-receptor mediated neurotransmission in the rat medial prefrontal cortical neurons in vitro Neuropsychopharmacology 1998; 18: 197–209

    CAS  Article  Google Scholar 

  49. Wang RY, Liang X . M100907 and clozapine, but not haloperidol or raclopride, prevent phencyclidine-induced blockade of NMDA responses in pyramidal neurons of the rat medial prefrontal cortical slice Neuropsychopharmacology 1998; 19: 74–85

    CAS  Article  Google Scholar 

  50. Bakshi VP, Geyer MA . Phencyclidine-induced deficits in prepulse inhibition of startle are blocked by prazosin, an alpha-1 noradrenergic antagonist J Pharmacol Exp Ther 1997; 283: 666–674

    CAS  PubMed  Google Scholar 

  51. Announcement. Management decisions on priority pipeline products—MDL 100907 In Vision Extra 1999; pp 2–3

  52. Truffinet P, Tamminga CA, Fabre LF, Meltzer HY, Riviere ME, Papillon-Downey C . Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia Am J Psychiatry 1999; 156: 419–425

    CAS  Google Scholar 

  53. Toth E, Lajtha A . Antagonism of phencyclidine-induced hyperactivity by glycine in mice Neurochem Res 1986; 11: 393–400

    CAS  Article  Google Scholar 

  54. Kuribara H, Uchihashi Y . SCH 23390 equivalently, but YM-09151-2 differentially reduces the stimulant effects of methamphetamine, MK-801 and ketamine: assessment by discrete shuttle avoidance in mice Jpn J Pharmacol 1993; 62: 111–114

    CAS  Article  Google Scholar 

  55. Jackson DM, Johansson C, Lindgren LM, Bengtsson A . Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats Pharmacol Biochem Behav 1994; 48: 465–471

    CAS  Article  Google Scholar 

  56. Krystal JH, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans Psychopharmacol (Berl) 1999; 145: 193–204

    CAS  Article  Google Scholar 

  57. Nabeshima T, Ishikawa K, Yamaguchi K, Furukawa H, Kameyama T . Phencyclidine-induced head-twitch responses as 5-HT2 receptor-mediated behavior in rats Neurosci Lett 1987; 76: 335–338

    CAS  Article  Google Scholar 

  58. Varty GB, Bakshi VP, Geyer MA . M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague-Dawley and Wistar rats Neuropsychopharmacology 1999; 20: 311–321

    CAS  Article  Google Scholar 

  59. Wang RY, Liang X . M100907 and clozapine, but not haloperidol or raclopride, prevent phencyclidine-induced blockade of NMDA responses in pyramidal neurons of the rat medial prefrontal cortical slice Neuropsychopharmacology 1998; 19: 74–85

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr H-C Guan for excellent assistance. We thank Professor HA Adams (Medizinische Hochschule Hannover, Germany) for donating a sample of S-ketamine. PS is a Janice Lieber Investigator of NARSAD and SK is supported by a Canada Research Chair in Schizophrenia and Therapeutic Neuroscience. This work was supported by NARSAD, the Ontario Mental Health Foundation, the Canadian Institutes for Health Research, the National Institute on Drug Abuse, the Stanley Foundation and by generous donations from Dr Karolina Jus and the Medland and O'Rorke families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kapur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapur, S., Seeman, P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors—implications for models of schizophrenia. Mol Psychiatry 7, 837–844 (2002). https://doi.org/10.1038/sj.mp.4001093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001093

Keywords

  • schizophrenia
  • dopamine
  • glutamate
  • PCP
  • ketamine
  • serotonin

Further reading

Search

Quick links