Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex

Abstract

The dynorphin system has been associated with the regulation of mood. The expression of the prodynorphin mRNA was currently studied in the amygdaloid complex, a brain region critical for emotional processing, in subjects (14–15 per group) diagnosed with major depression, bipolar disorder, or schizophrenia and compared to normal controls. In situ hybridization histochemistry was used to characterize the anatomical distribution and expression levels of the prodynorphin mRNA within the amygdaloid complex. High prodynorphin mRNA levels were expressed in the parvicellular division of the accessory basal, posterior cortical, periamygdaloid cortex, and amygdalohippocampal area in normal subjects. Individuals with major depression had significantly reduced (41–68%) expression of the prodynorphin mRNA in the accessory basal (both parvicellular and magnocellular divisions; P < 0.01) and amygdalohippocampal area (P < 0.001) as compared to controls. The bipolar disorder group also showed a significant reduction (37–38%, P < 0.01) of the mRNA expression levels in the amygdalohippocampal area and in the parvicellular division of the accessory basal. No other amygdala nuclei studied showed any significant differences for the prodynorphin mRNA levels measured in the major depression and bipolar disorder subjects. Additionally, the prodynorphin mRNA expression levels did not differ significantly between the schizophrenic and normal control subjects in any of the amygdala areas examined. These findings indicate specific prodynorphin amygdala impairment in association with mood disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hurd YL . Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain Neuroscience 1996 72: 767–783

    Article  CAS  Google Scholar 

  2. Pfeiffer A, Brandt V, Herz A . Psychotomimesis mediated by kappa opiate receptors Science 1986 233: 774–776

    Article  CAS  Google Scholar 

  3. Giuffra M, Mouradian MM, Davis TL, Ownby J, Chase TN . Dynorphin agonist therapy of Parkinson's disease Clin Neuropharmacol 1993 16: 444–447

    Article  CAS  Google Scholar 

  4. Lindström LK, Terenius L . Abnormal opioid neuropeptide processing in schizophrenia Neurosci Suppl 1987 22: S15

    Google Scholar 

  5. Heikkila L, Rimon R, Terenius L . Dynorphin A and substance P in the cerebrospinal fluid of schizophrenic patients Psychiat Res 1990 34: 229–236

    Article  CAS  Google Scholar 

  6. Zhang AZ, Zhou GZ, Xi GF, Gu NF, Xia ZY, Yao JL et al. Lower CSF level of dynorphin (1–8) immunoreactivity in schizophrenic patients Neuropeptides 1985 5: 553–556

    Article  Google Scholar 

  7. Hurd YL, Herman MM, Hyde TM, Bigelow LB, Weinberger DR, Kleinman JE . Prodynorphin mRNA expression is increased in the patch versus matrix compartment of the caudate nucleus in suicide subjects Mol Psychiatry 1997 2: 495–500

    Article  CAS  Google Scholar 

  8. Gallagher M, Bhiba AA . The amygdala and emotion Curr Opin Neurobiol 1996 6: 221–227

    Article  CAS  Google Scholar 

  9. Aggleton JP . The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction Wiley-Liss: New York 1992

    Google Scholar 

  10. LeDoux JE . Emotion circuits in the brain Ann Rev Neurosci 2000 23: 155–184

    Article  CAS  Google Scholar 

  11. Mori E, Ikeda M, Hirono N, Kitagaki H, Imamura T, Shimomura T . Amygdalar volume and emotional memory in Alzheimer's disease Am J Psychiatry 1999 156: 216–222

    CAS  PubMed  Google Scholar 

  12. Tomaz C, Dickinson-Anson H, McGaugh JL, Souza-Silva MA, Viana MB, Graeff FG . Localization in the amygdala of the amnestic action of diazepam on emotional memory Behav Brain Res 1993 58: 99–105

    Article  CAS  Google Scholar 

  13. Adolphs R, Tranel D, Damasio H, Damasio AR . Fear and the human amygdala J Neurosci 1995 15: 5879–5891

    Article  CAS  Google Scholar 

  14. Isenberg N, Silbersweig D, Engelien A, Emmerich S, Malavade K, Beattie B et al. Linguistic threat activates the human amygdala Proc Natl Acad Sci USA 1999 96: 10456–10459

    Article  CAS  Google Scholar 

  15. Adolphs R, Tranel D, Damasio AR . The human amygdala in social judgment Nature 1998 393: 470–474

    Article  CAS  Google Scholar 

  16. Morris JS, Ohman A, Dolan RJ . Conscious and unconscious emotional learning in the human amygdala Nature 1998 393: 467–470

    Article  CAS  Google Scholar 

  17. Davis M, Rainnie D, Cassell M . Neurotransmission in the rat amygdala related to fear and anxiety Trends Neurosci 1994 17: 208–214

    Article  CAS  Google Scholar 

  18. Everitt B, Robbins T . Amygdala-ventral striatal interactions and reward-related processes. In: Aggleton JP (ed) The Amygdala Wiley-Liss: New York 1992 pp 401–429

    Google Scholar 

  19. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA . Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge J Neurosci 1998 18: 411–418

    Article  CAS  Google Scholar 

  20. Tebartz van Elst L, Woermann F, Lemieux L, Trimble MR . Increased amygdala volumes in female and depressed humans. A quantitative magnetic resonance imaging study Neurosci Lett 2000 281: 103–106

    Article  CAS  Google Scholar 

  21. Sheline YI, Gado MH, Price JL . Amygdala core nuclei volumes are decreased in recurrent major depression Neuroreport 1998 9: 2023–2028

    Article  CAS  Google Scholar 

  22. Strakowski SM, DelBello MP, Sax KW, Zimmerman ME, Shear PK, Hawkins JM et al. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder Arch Gen Psychiat 1999 56: 254–260

    Article  CAS  Google Scholar 

  23. Sukhov RR, Walker LC, Rance NE, Price DL, Young WS III . Opioid precursor gene expression in the human hypothalamus J Comp Neurol 1995 353: 604–622

    Article  CAS  Google Scholar 

  24. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley Foundation brain collection and neuropathology consortium Schizophr Res 2000 44: 151–155

    Article  CAS  Google Scholar 

  25. Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H et al. Isolation and structural organization of the human preproenkephalin B gene Nature 1983 306: 611–614

    Article  CAS  Google Scholar 

  26. Sorvari H, Soininen H, Paljärvi L, Karkola K, Pitkänen A . Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex J Comp Neurol 1995 360: 185–212

    Article  CAS  Google Scholar 

  27. de Olmos JS . Amygdaloid nuclear gray complex. In: Paxinos G (ed) The Human Nervous System Academic Press: San Diego, New York 1990 pp 583–710

    Chapter  Google Scholar 

  28. Gloor P . The amygdaloid system. In: Gloor P (ed) The Temporal Lobe and Limbic System Oxford University Press: New York 1997 pp 591–651

    Google Scholar 

  29. Bendel RB, Afifi A-A . Comparison of stopping rules in forward regression J Amer Statistical Assoc 1977 72: 46–53

    Google Scholar 

  30. Przewlocki R, Lason W, Majeed NH, Przewlocka B . Antidepressants and endogenous opioid peptide systems Neuropeptides 1985 5: 575–578

    Article  CAS  Google Scholar 

  31. Bowley MP, Drevets WC, Öngür D, Price JL . Glial changes in the amygdala and entorhinal cortex in mood disorders Soc Neurosci Abstr 2000 26: 867.10

    Google Scholar 

  32. Mann JJ . Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior Neuropsychopharmacology 1999 21 (2 Suppl): 99S–105S

    Article  Google Scholar 

  33. Meltzer HY . Role of serotonin in depression Ann NY Acad Sci 1990 600: 486–500

    Article  CAS  Google Scholar 

  34. Price LH, Charney DS, Delgado PL, Heninger GR . Lithium and serotonin function: implications for the serotonin hypothesis of depression Psychopharmacology 1990 100: 3–12

    Article  CAS  Google Scholar 

  35. Morris BJ, Reimer S, Höllt V, Herz A . Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway Molec Brain Res 1988 4: 15–22

    Article  CAS  Google Scholar 

  36. Azmitia EC, Gannon PJ . The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis Adv Neurol 1986 43: 407–468

    CAS  PubMed  Google Scholar 

  37. Åsberg M, Nordström P . Biological correlates of suicidal behavior. In: Möller HJ, Schmidtke A, Welz R (eds) Current Issues of Suicidology Springer Verlag: Berlin, New York 1988 pp 221–241

    Chapter  Google Scholar 

  38. Nordström P, Samuelsson M, Åsberg M, Träskman-Bendz L, Åberg-Wistedt A, Nordin C et al. CSF 5-HIAA predicts suicide risk after attempted suicide Suicide and Life-Threatening Behav 1994 24: 1–9

    Google Scholar 

  39. Mann JJ, Malone KM, Psych MR, Sweeney JA, Brown RP, Linnoila M et al. Attempted suicide characteristics and cerebrospinal fluid amine metabolites in depressed inpatients Neuropsychopharmacology 1996 15: 576–586

    Article  CAS  Google Scholar 

  40. Michael-Titus AT, Bains S, Jeetle J, Whelpton R . Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex_a possible mechanism of neuroprotection in major depression? Neuroscience 2000 100: 681–684

    Article  CAS  Google Scholar 

  41. Paul IA, Layer RT, Skolnick P, Nowak G . Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine Eur J Pharmacol 1993 247: 305–311

    Article  CAS  Google Scholar 

  42. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P . Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments J Pharmacol Exp Ther 1994 269: 95–102

    CAS  Google Scholar 

  43. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients Biol Psychiat 2000 47: 351–354

    Article  CAS  Google Scholar 

  44. Trullas R, Skolnick P . Functional antagonists at the NMDA receptor complex exhibit antidepressant actions Eur J Pharmacol 1990 185: 1–10

    Article  CAS  Google Scholar 

  45. Meloni D, Gambarana C, De Montis MG, Dal Pra P, Taddei I, Tagliamonte A . Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats Pharmacol Biochem Behav 1993 46: 423–426

    Article  CAS  Google Scholar 

  46. Wagner JJ, Terman GW, Chavkin C . Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus Nature 1993 363: 451–454

    Article  CAS  Google Scholar 

  47. Gannon RL, Terrian DM . 50,488H inhibits dynorphin and glutamate release from guinea pig hippocampal mossy fiber terminals Brain Res 1991 548: 242–247

    Article  CAS  Google Scholar 

  48. Narabayashi H, Shima F . Which is the better amygdala target, the medial or lateral nucleus for behavioral problems and paroxysms in epileptics. In: Laitinen LV, Livingston KE (eds) Surgical Approaches in Psychiatry University Park Press: Baltimore 1973 pp 129–134

    Google Scholar 

  49. Amaral DG, Price JL, Pitkänen A, Carmichael ST . Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction Wiley-Liss: New York 1992 pp 1–66

    Google Scholar 

  50. Schulz R, Wilhelm A, Dirlich G . Intracerebral injection of different antibodies against endogenous opioids suggests alpha-neoendorphin participation in control of feeding behaviour Naunyn Schm Arch Pharmacol 1984 326: 222–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Karolinska Institute, Swedish Medical Research Council (11252), and the Stanley Foundation. Post-mortem brains were donated by the Stanley Foundation Brain Consortium courtesy of Drs Llewellyn B Bigelow, Juraj Cervenak, Mary M Herman, Thomas M Hyde, Joel E Kleinman, José D Paltán, Robert M Post, E Fuller Torrey, Maree J Webster, and Robert H Yolken. Mrs Barbro Berthelsson and Miss Pia Eriksson are thanked for their valuable technical assistance and Elisabeth Berg (Karolinska Institute Statistical Department) for helpful statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y L Hurd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurd, Y. Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol Psychiatry 7, 75–81 (2002). https://doi.org/10.1038/sj.mp.4000930

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000930

Keywords

This article is cited by

Search

Quick links