Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers

Abstract

Methods for organizing materials at the nanometre scale have advanced tremendously in recent years1,2. One important objective is the synthesis of patterned arrays of inorganic nanocrystals3,4,5,6, whose optical, electronic and magnetic properties might find technological uses, for example as memory elements. Techniques such as colloidal crystallization7,8,9, monolayer deposition10,11,12, multilayer casting13, molecular crosslinking14,15, the use of complementary interactions16,17 and the synthesis of nanoparticles in patterned etch pits18 have been used to organize nanocrystals into superlattices. Here we describe the use of bacterial S-layers — self-assembled, two-dimensionally ordered films of proteins that feature in many bacterial cell walls — as templates for the in situ nucleation of ordered two-dimensional arrays of cadmium sulphide nanocrystals about 5 nm in size. Nucleation of the inorganic phase is confined to the pores between subunits in the S-layers. Two-tier stacks of nanoparticles can be formed in the presence of double-layered protein crystals. The structural diversity of S-layers19,20, their ease of self-assembly on a wide range of substrates and the potential for surface chemical modification suggest that this approach could be exploited to offer a wide range of ordered nanoparticle arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrate-assisted self-assembly of bacterial S-layer monolayers used for biocrystal templating of CdS superlattices.
Figure 2: a, TEM micrograph of a negatively stained self-assembled S-layer of B.
Figure 3: A, TEM micrograph of a mineralized double-layered sheet of B. stearothermophilus NRS2004/3a variant 1 S-layers, showing organized array of CdS nanoparticles and 32-nm stripe pattern due to Moiré effects; scale bar, 100 nm.

Similar content being viewed by others

References

  1. Nanostructured Materials (spec. iss. eds Bein, T. & Stucky, G. D.) Chem. Mater. 8, 1569–2194 (1996).

  2. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Chan, Y. N. C., Schrock, R. R. & Cohen, R. E. Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films. J. Am. Chem. Soc. 114, 7295–7296 (1992).

    Article  Google Scholar 

  4. Spatz, J. P., Roescher, A. & Möller, A. Gold nanoparticles in micellar poly(styrene)-β-poly(ethylene oxide) films; size and interparticle distance control in monoparticulate films. Adv. Mater. 8, 337–334 (1996).

    Article  CAS  Google Scholar 

  5. Burkett, S. L. & Mann, S. Spatial-organization and pattening of gold nanoparticles on self assembled biolipid tubular templates. Chem. Commun. 321–322 (1996).

  6. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystals into 3-dimensional quantum dot super lattices. Science 270, 1335–1338 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Vossmeyer, T. et al. Adouble diamond superlattice built up of Cd17S4(SCH2CH2OH)(26)clusters. Science 267, 1476–1479 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Motte, L., Billoudet, F., Lacaze, E. & Pileni, M.-P. Self-organization of size-selected nanoparticles into three dimensional superlattices. Adv. Mater. 8, 1018–1020 (1996).

    Article  CAS  Google Scholar 

  10. Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. J. Am. Chem. Soc. 114, 5221–5230 (1992).

    Article  CAS  Google Scholar 

  11. Dabbousi, B. O., Murray, C. B., Rubner, M. F. & Bawendi, M. G. Langmuir-Blodgett manipulation of size selected CdSe nanocrystals. Chem Mater. 6, 216–219 (1994).

    Article  CAS  Google Scholar 

  12. Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  13. Kimizuka, N. & Kunitake, T. Organic 2-dimensional templates for the fabrication of inorganic nanostructures. Adv. Mater. 8, 89–91 (1996).

    Article  CAS  Google Scholar 

  14. Brust, M., Bethall, D., Schiffrin, D. J. & Kiely, C. J. Novel gold dithiol nanonetworks with non-metallic electronic properties. Adv. Mater. 7, 795–797 (1995).

    Article  CAS  Google Scholar 

  15. Andres, R. P. et al. Self-assembly of a 2-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. ADNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Alivisatos, A. P. et al. Organization of nanocrystal molecules using DNA. Nature 382, 609–611 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Heath, J. R. et al. Spatially confined chemistry: fabrication of Ge quantum dot arrays. J. Phys. Chem. 100, 3144–3149 (1996).

    Article  CAS  Google Scholar 

  19. Sleytr, U. B., Messner, P., Pum, D. & Sara, M. (eds) Crystalline Bacterial Cell Surface Proteins (Landes Co., Austin, & Academic, San Diego, (1996)).

    Google Scholar 

  20. Beveridge, T. J. Bacterial S-layers. Curr. Opin. Struct. Biol. 4, 204–212 (1994).

    Article  CAS  Google Scholar 

  21. Sara, M. & Egelseer, E. in Crystalline Bacterial Cell Surface Proteins (eds Sleytr, U. B., Messner, P., Pum, D. & Sara M.) 103–131 (Landes Co., Austin, & Academic, San Diego, (1996)).

    Google Scholar 

  22. Schultze-Lam, S. & Beveridge, T. J. Nucleation of celestite and strontianite on a cyanobacterial S-layer. Appl. Environ. Microbiol. 60, 447–453 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lowenstam, H. A. in Mechanisms and Phylogeny of Mineralization in Biological Systems (eds Suga, S. & Nakara, H.) 3–8 (Springer, Tokyo, (1991)).

    Book  Google Scholar 

  24. Sara, M., Pum, D., Kuepcue, S., Messner, P. & Sleytr, U. B. Isolation of two physiologically induced varient strains of Bacillus stearothermophilus NRS 2004/3A and characterisation of their lattices. J. Bacteriol. 176, 848–860 (1994).

    Article  CAS  Google Scholar 

  25. Messner, P., Pum, D. & Sleytr, U. B. Characterisation of the ulstrastructure and self assembly of the S-layer of Bacillus stearothermophilus strain NRS 2004/3A. J. Ultrastruct. Mol. Struct. Res. 97, 73–88 (1986).

    Article  CAS  Google Scholar 

  26. Sleytr, U. B. & Sara, M. Bacterial and archael S-layer proteins: Structure-function relationships and their biotechnological applications. Trends Biotechnol. 15, 20–26 (1997).

    Article  CAS  Google Scholar 

  27. Douglas, K., Devaud, G. & Clark, N. A. Transfer of biologically derived nanometer scale patterns to smooth substrates. Science 257, 642–644 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Tucker, J. R. Complementary digital logic based on the coulomb blockade. J. Appl. Phys. 71, 4399–4402 (1992).

    Article  ADS  Google Scholar 

  29. Pum, D., Sara, M. & Sleytr, U. B. Structure, surface charge and self assembly of the S-layer lattice from Bacillus coagulans E38-55. J. Bacteriol. 171, 5296–5303 (1989).

    Article  CAS  Google Scholar 

  30. Pum, D. & Sleytr, U. B. Large scale reconstitution of crystalline S-layer proteins at the air–water interface and on lipid films. Thin Solid Films 244, 882–886 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

W.S. thanks the University of Bath for a postgraduate studentship. This work was supported in part by the Austrian Science Foundation, Project S7204 and S7205, the Austrian Ministry of Science and Transportation, and the Austrian National Bank.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uwe B. Sleytr or Stephen Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenton, W., Pum, D., Sleytr, U. et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997). https://doi.org/10.1038/39287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39287

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing