Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bending and buckling of carbon nanotubes under large strain

Abstract

The curling of a graphitic sheet to form carbon nanotubes1 produces a class of materials that seem to have extraordinary electrical and mechanical properties2. In particular, the high elastic modulus of the graphite sheets means that the nanotubes might be stiffer and stronger than any other known material3,4,5, with beneficial consequences for their application in composite bulk materials and as individual elements of nanometre-scale devices and sensors6. The mechanical properties are predicted to be sensitive to details of their structure and to the presence of defects7, which means that measurements on individual nanotubes are essential to establish these properties. Here we show that multiwalled carbon nanotubes can be bent repeatedly through large angles using the tip of an atomic force microscope, without undergoing catastrophic failure. We observe a range of responses to this high-strain deformation, which together suggest that nanotubes are remarkably flexible and resilient.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Curvature and height of buckles along a bent carbon nanotube.
Figure 2: Carbon nanotube in highly strained configuration.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, (1996)).

    Google Scholar 

  3. Robertson, D. H., Brenner, D. W. & Mintmire, J. W. Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–12595 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Sawada, S. & Hamada, N. Energetics of carbon nano-tubes. Solid State Commun. 83, 917–919 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Zhou, O. et al. Defects in carbon nanostructures. Science 263, 1744–1747 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Lieber, C. Nanotube derived materials. Bull. Am. Phys. Soc. 42, 591 (1997).

    Google Scholar 

  9. Yakobson, B. I., Brabec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ruoff, R. S. & Lorents, D. C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–929 (1995).

    Article  CAS  Google Scholar 

  11. Despres, J. F., Daguerre, D. & Lafdi, K. Flexibility of graphene layers in carbon nanotubes. Carbon 33, 87–92 (1995).

    Article  CAS  Google Scholar 

  12. Iijima, S., Brabec, A., Maiti, A. & Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Ebbesen, T. W., in Carbon Nanotubes: Preparation and Properties (ed. Ebbesen, T. W.) 225–248 (CRC, Boca Raton, (1997)).

    Google Scholar 

  14. Ruoff, R. S. & Kadish, K. M. Fullerenes; Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials Vol. 2 (Electrochem. Soc., Pennington, NJ, (1995)).

    Google Scholar 

  15. Ebbesen, T. W. & Ajayan, P. M. Large scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Taylor, R. M. I et al. The Nanomanipulator: A Virtual Reality Interface for a Scanning Tunneling Microscope. (ed. J. T. Kajiya) 127–134 (Association for Computing Machinery, New York, (1993)).

    Google Scholar 

  17. Finch, M. et al. Surface Modification Tools in a Virtual Environment Interface to a Scanning Probe Microscope. (ed. P. Hanrahan & J. Winget) 13–18 (Association for Computing Machinery, New York, (1995)).

    Google Scholar 

  18. Pizer, S. M., Eberly, D., Morse, B. S. & Fritsch, D. S. Zoom-invariant vision of figural shape: the mathematics of cores. Comput. Vision Image Understand.(in the press).

  19. Fritsch, D. S., Eberly, D., Pizer, S. M. & McAuliffe, M. J. Simulated cores and their applictaions in medical imaging. Information Processing in Medical Imaging, Proc. IPMI '95(ed. Y Bazals, C. Barillot and R. Di Paola) 365–368 (Kluwer, Dordrecht, The Netherlands(1994).

  20. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, Oxford, (1986)).

    MATH  Google Scholar 

  21. Ju, G. T. & Kyriakides, S. Bifurcation and localization instabilities in cylindrical shells under bending – II. Predictions. Int. J. Solids Structures 29, 1143–1171 (1992).

    Article  Google Scholar 

  22. Axelrad, E. L. On local buckling of thin shells. Int. J. Non-Linear Mech. 20, 249–259 (1985).

    Article  ADS  Google Scholar 

  23. Chopra, N. G. et al. Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Yakobson, B. I., Campbell, M. P., Brabec, C. J. & Bernholc, J. High strain rate fracture, and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997).

    Article  CAS  Google Scholar 

  25. Lu, J. P. Elastic properties of carbon nanotubes and nanoropes Phys. Rev. Lett. 79, 1297–1300 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Zhou for providing the carbon nanotube soot and S. Paulson for help with sample preparation. This work was supported by the National Science Foundation, National Institutes of Health National Centers for Research Resources, Topometrix, Inc. and Silicon Graphics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Superfine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falvo, M., Clary, G., Taylor, R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997). https://doi.org/10.1038/39282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39282

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing