Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induced long-range order in crosslinked ‘one-dimensional’ stacks of fluid monolayers

Abstract

Ordinary crystals are characterized by long-range translational order in all three dimensions. In lower-dimensional systems, in contrast, translational order is destroyed through the ‘Landau–Peierls instability’ — displacements from periodic ordering due to thermal fluctuations whose amplitude increases with the size of the system1,2,3,4. This effect is well known for layered systems ordered in one dimension, such as surfactant membranes5,6, smectic (layered) liquid crystals7 and liquid crystalline polymers8, which form ordered stacks of fluid monolayers. Smectic liquid-crystal polymers can be weakly crosslinked to form percolating elastomeric networks that still allow mobility on a molecular scale9,10. In these smectic elastomers, fluctuations of the fluid layers are coupled to distortions of the underlying network, and are therefore energetically penalized11, even though the network of crosslinks has a random nature and thus no three-dimensional translational order. Here we present a high-resolution X-ray diffraction study of a smectic elastomer that reveals the effects of crosslinking on long-range ordering. We find that the introduction of a random network of crosslinks enhances the stability of the layered structure against thermal fluctuations and suppresses the Landau–Peierls instability so as to induce ‘one-dimensional’ long-range ordering at length-scales up to several micrometres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a smectic liquid crystal (a), a smectic-crystalline polymer (b), and a weakly crosslinked smectic elastomer network (c).
Figure 2: The polymer and crosslinking agent used in these experiments.
Figure 3: Results of X-ray diffraction studies.

Similar content being viewed by others

References

  1. Landau, L. D. in Collected Papers of L. D. Landau (ed. ter Haar, D.) 193–216 (Gordon & Breach, New York, (1965)).

    Google Scholar 

  2. Peierls, R. E. Bemerkung über Umwandlungstemperaturen. Helv. Phys. Acta Suppl. 7, S81–S83 (1934).

    Google Scholar 

  3. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, New York, (1995)).

    Book  Google Scholar 

  4. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Clarendon Press, Oxford, (1993)).

    Google Scholar 

  5. Safinya, C. R. et al. Steric interactions in a model multimembrane system: a synchrotron X-ray study. Phys. Rev. Lett. 57, 2718–2721 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Sirota, E., Smith, G. S., Safinya, C. R., Plano, R. J. & Clark, N. A. X-ray scattering studies of aligned, stacked surfactant membranes. Science 242, 1406–1409 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Als-Nielsen, J. et al. Observation of algebraic decay of positional order in a smectic liquid crystal. Phys. Rev. B22, 312–320 (1980).

    Article  ADS  Google Scholar 

  8. Nachaliel, E., Keller, E. N., Davidov, D. & Boeffel, C. Algebraic dependence of the structure factor and possible anharmonicity in a high resolution X-ray study of a side-group polymeric liquid crystal. Phys. Rev. A43, 2897–2902 (1991).

    Article  ADS  Google Scholar 

  9. Zentel, R. Liquid crystalline elastomers. Angew. Chem. Adv. Mater. 101, 1407–1415 (1989).

    Article  Google Scholar 

  10. Finkelmann, H., Benne, J. & Semmler, K. Smectic liquid crystal elastomers. Macromol. Symp. 96, 169–174 (1995).

    Article  CAS  Google Scholar 

  11. Terentjev, E. M., Warner, M. & Lubensky, T. C. Fluctuations and long-range order in smectic elastomers. Europhys. Lett. 30, 343–348 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Caillé, A. Remarques sur la diffusion des rayons X dans les smectiques. C. R. Acad. Sci. Paris B274, 891–893 (1972).

    Google Scholar 

  13. Warren, B. E. X-ray Diffraction (Addison-Wesley, Reading, (1969)).

    Google Scholar 

  14. de Gennes, P. G. in Polymer Liquid Crystals (eds Ciferri, A., Krigbaum, W. R. & Meyer, R. B.) 115–132 (Academic, New York, (1982)).

    Google Scholar 

  15. Mitchell, G. R., Davis, F. J. & Guo, W. Strain-induced transitions in liquid-crystal elastomers. Phys. Rev. Lett. 71, 2947–2950 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Krivoglaz, M. Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Plenum, New York, (1969)).

    Google Scholar 

  17. Zentel, R. & Benalia, M. Stress-induced orientation in lightly crosslinked liquid-crystalline side-group polymers. Makromol. Chem. 188, 665–674 (1987).

    Article  CAS  Google Scholar 

  18. Kaganer, V. M., Ostrovsky, B. I. & de Jeu, W. H. X-ray scattering in smectic liquid crystals: from ideal- to real-structure effects. Phys. Rev. A44, 8158–8166 (1991).

    Article  ADS  Google Scholar 

  19. Olmsted, P. D. & Terentjev, E. M. Mean-field nematic-smectic-A transition in a random polymer network. Phys. Rev. E53, 2444–2453 (1996).

    ADS  Google Scholar 

  20. Blatter, G., Feigelíman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high temperature superconductors. Rev. Mod. Phys. 66, 1125–1380 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Terentjev, E. M. Non-uniform deformations and molecular random fields in liquid crystalline elastomers. Macromol. Symp. 117, 79–88 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. M. Terentjev for discussions, E. Gebhard for assistance in sample preparation, and J. Commandeur for technical support. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie [Foundation for Fundamental Research on Matter (FOM)] with support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Netherlands Organization for the Advancement of Research (NWO)]. W.d.J. acknowledges additional support from a NATO collaborative research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim H. de Jeu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, G., de Jeu, W., Shao, H. et al. Induced long-range order in crosslinked ‘one-dimensional’ stacks of fluid monolayers. Nature 389, 576–579 (1997). https://doi.org/10.1038/39271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39271

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing