Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Competition between randomizing impacts and inelastic collisions in granular pattern formation

Abstract

The flow and mixing of granular materials occur during handling of a wide variety of substances, from pharmaceuticals to cement to cereal grains1,2. The understanding of such flows is, however, considerably more limited than it is for fluids3; even basic processes such as tumbling4,5, simple shear6,7,8 and shaking9,10,11,12 give rise to unexpected results. A case in point is granular pattern formation. A rich variety of patterns, including stripes, squares, hexagons and solitary structures, has been observed in vertically shaken, shallow granular beds13,14. The vertical dynamics responsible for these patterns have been explored15,16,17,18,19, but the role of horizontal motions of the grains is less well understood. Here I present a model of these motions that identifies two aspects as central to pattern formation: the randomization of horizontal velocities20 by shaking, and the inelastic nature of grain collisions. These two elements alone, even without the influence of gravity, are sufficient to produce organized patterns in the horizontal plane — both those observed and others not yet seen experimentally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of particles subject to random expansion followed by inelastic collisions.
Figure 2: Patterned states as a function of the strength of the randomizing tap ( V) and the period between taps ( T).
Figure 3: Particle densities from mean-field simulation in square (left), and striped (right) patterns.

Similar content being viewed by others

References

  1. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).

    Article  ADS  Google Scholar 

  2. Ennis, B. J., Green, J. & Davies, R. The legacy of neglect in the US. Chem. Eng. Progr. 90, 32–43 (1994).

    CAS  Google Scholar 

  3. Ottino, J. M. & Shinbrot, T. Comparing extremes: mixing of fluids, mixing of solids. NATO-ASI Mixing: Chaos and Turbulence Proc.(in the press).

  4. Metcalf, G., Shinbrot, T., McCarthy, J. J. & Ottino, J. M. Avalanche mixing of granular solids. Nature 374, 39–41 (1995).

    Article  ADS  Google Scholar 

  5. Hill, K. M. & Kakalios, J. Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610–R3614 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Bagnold, R. A. The shearing and dilatation of dry sand and the ‘singing’ mechanism. Proc. R. Soc. Lond. A 295, 219–232 (1966).

    Article  ADS  Google Scholar 

  7. Nasuno, S., Kudrolli, A. & Gollub, J. P. Friction in granular layers: hysteresis and precursors. Phys. Rev. Lett. 79, 944–952 (1997).

    Article  ADS  Google Scholar 

  8. Miller, B., O'Hern, C. & Behringer, R. P. Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77, 3110–3113 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Umbanhowar, P. B., Melo, F. & Swinney, H. L. Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Luding, S., Clément, E., Blumen, A., Rajchenbach, J. & Duran, J. Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634–1610 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Clément, E., Vanel, L., Rajchenbach, J. & Duran, J. Pattern formation in a vibrated granular layer. Phys. Rev. E 53, 2972–2979 (1996).

    Article  ADS  Google Scholar 

  12. Pak, H., van Doorn, E. & Behringer, R. Effects of ambient gases on granular materials under vertical vibration. Phys. Rev. Lett. 74, 4643–4647 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Metcalf, T. H., Knight, J. B. & Jaeger, H. M. Standing wave patterns in shallow beds of vibrated granular material. Physica A 236, 202–210 (1997).

    Article  ADS  Google Scholar 

  14. Melo, F., Umbanhowar, P. & Swinney, H. L. Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72, 172–175 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Douady, S., Fauve, S. & Laroche, C. Subharmonic instabilities and defects in a granular layer under vertical vibrations. Europhys. Lett. 8, 621–627 (1989).

    Article  ADS  Google Scholar 

  16. Wassgren, C. R., Brennen, C. E. & Hunt, M. L. Vertical vibration of a deep bed of granular material in a container. J. Appl. Mech. 63, 712–719 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Melo, F., Umbanhowar, P. B. & Swinney, H. L. Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Cerda, E., Melo, F. & Rica, S. Amodel for parametric waves in granular materials (preprint).(Dept. de Física, Univ. de Santiago, (1997)).

  19. Luding, S., Clément, E., Rajchenbach, J. & Duran, J. Simulations of pattern formation in vibrated granular media. Europhys. Lett. 36, 247–251 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Menon, N. & Durian, D. J. Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow. Science 275, 1920–1922 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Metcalf, T. H., Knight, J. B. & Jaeger, H. M. Standing wave patterns in shallow beds of vibrated granular material. Physica A 236, 202–210 (1997).

    Article  ADS  Google Scholar 

  22. Crawford, J. D., Gollub, J. P. & Lane, D. Hidden symmetries of parametrically forced waves. Nonlinearity 6, 119–164 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  23. Sinai, Ya. G. Dynamical systems with elastic reflections: ergodic properties of dispersing billiards. Russ. Math. Surv. 25, 137–147 (1970).

    Article  MathSciNet  Google Scholar 

  24. Bleher, S., Grebogi, C. & Ott, E. Bifurcation to chaotic scattering. Physica D 46, 87–121 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, Q., Ding, M.-Z. & Ott, E. Chaotic scattering in several dimensions. Phys. Lett. A 115, 93–95 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  26. Ding, M.-Z., Grebogi, C., Ott, E. & Yorke, J. A. Transition to chaotic scattering. Phys. Rev. A 42, 7025–7040 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Bizon, C., Shattuck, M. D., Swift, J. B., McCormick, W. D. & Swinney, H. L. Patterns in 3D vertically oscillated granular layers: simulation and experiment. Phys. Rev. Lett.(in the press).

  28. Tsimring, L. & Aranson, I. Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 79, 213–216 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Kudrolli, A. & Gollub, J. P. Localized spatiotemporal chaos in surface waves. Phys. Rev. E 54, R1052–R1055 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Edwards, W. & Fauve, S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123–134 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  31. Winfree, A. T. Spiral waves of chemical activity. Science 175, 634–638 (1972).

    Article  ADS  CAS  Google Scholar 

  32. Pearson, J. E. Complex patterns in a simple system. Science 261, 189–192 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank J. M. Ottino for thoughtful advice, J. J. McCarthy for valuable comments and assistance, and H. Jaeger, M. Mavrovouniotis, H. Swinney and P. Umbanhowar for crucial scientific discussions. This work was supported by the National Science Foundation (Division of Chemical and Transport Systems) and the American Chemical Society (Petroleum Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Shinbrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinbrot, T. Competition between randomizing impacts and inelastic collisions in granular pattern formation. Nature 389, 574–576 (1997). https://doi.org/10.1038/39264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39264

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing