Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene and stem cell therapy for erectile dysfunction

Abstract

Erectile dysfunction (ED) is defined as the inability to attain and/or maintain penile erection sufficient for satisfactory sexual performance. ED is a highly prevalent health problem with considerable impact on the quality of life of men and their partners. Although the treatment of ED with oral phosphodiesterase type V (PDE5) inhibitors is effective in a wide range of individuals, it is not efficacious in all patients. The failure of PDE5 inhibitors happens mainly in men with diabetes, non-nerve sparing radical prostatectomy, and high disease severity. Therefore, improved therapies based on a better understanding of the fundamental issues in erectile physiology and pathophysiology have recently been proposed. Here, we summarize studies on ED treatment using gene and stem cell therapies. Adenoviral-mediated intracavernosal transfer of therapeutic genes, such as endothelial nitric oxide synthase (eNOS), calcitonin gene-related peptide (CGRP), superoxide dismutase (SOD), and RhoA/Rho kinase and mesenchymal stem cell-based cell and gene therapy strategy for the treatment of age- and diabetes-related ED are the focus of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shabsigh R, Anastasiadis AG . Erectile dysfunction. Annu Rev Med 2003; 54: 153–168.

    Article  CAS  PubMed  Google Scholar 

  2. Rajfer J et al. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 1992; 326: 90–94.

    Article  CAS  PubMed  Google Scholar 

  3. Cellek S . Let's make NO mistake!. Int J Impot Res 2005; 17: 388–389.

    Article  CAS  PubMed  Google Scholar 

  4. Burnett AL et al. Nitric oxide: a physiologic mediator of penile erection. Science 1992; 257: 401–403.

    Article  CAS  PubMed  Google Scholar 

  5. Toda N, Ayajiki K, Okamura T . Nitric oxide and penile erectile function. Pharmacol Ther 2005; 106: 233–266.

    Article  CAS  PubMed  Google Scholar 

  6. Giuliano F, Rampin O . Neural control of erection. Physiol Behav 2004; 83: 189–201.

    Article  CAS  PubMed  Google Scholar 

  7. Nehra A et al. Third International Conference on the Management of Erectile Dysfunction: Linking Pathophysiology and Therapeutic Response. J Urol 2003; 170: S3–S5.

    Article  PubMed  Google Scholar 

  8. Rosen RC . Psychogenic erectile dysfunction. Classification and management. Urol Clin North Am 2001; 28: 269–278.

    Article  CAS  PubMed  Google Scholar 

  9. Seftel AD, Sun P, Swindle R . The prevalence of hypertension, hyperlipidemia, diabetes mellitus and depression in men with erectile dysfunction. J Urol 2004; 171: 2341–2345.

    Article  PubMed  Google Scholar 

  10. Rendell MS, Rajfer J, Wicker PA, Smith MD . Sildenafil for treatment of erectile dysfunction in men with diabetes: a randomized controlled trial. Sildenafil Diabetes Study Group. JAMA 1999; 281: 421–426.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Jabaloyas JM et al. Prognostic factors for response to sildenafil in patients with erectile dysfunction. Eur Urol 2001; 40: 641–646.

    Article  CAS  PubMed  Google Scholar 

  12. Shabsigh R . Therapy of ED: PDE-5 Inhibitors. Endocrine 2004; 23: 135–141.

    Article  CAS  PubMed  Google Scholar 

  13. Setter SM et al. Phosphodiesterase 5 inhibitors for erectile dysfunction. Ann Pharmacother 2005; 39: 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Cadavid NF, Ignarro LJ, Rajfer J . Nitric Oxide and the Cyclic GMP System in the Penis. Mol Urol 1999; 3: 51–59.

    CAS  PubMed  Google Scholar 

  15. Garban H et al. Effect of aging on nitric oxide-mediated penile erection in rats. Am J Physiol 1995; 268: 467–475.

    Google Scholar 

  16. Matz RL, Andriantsitohaina R . Age-related endothelial dysfunction: potential implications for pharmacotherapy. Drugs Aging 2003; 20: 527–550.

    Article  CAS  PubMed  Google Scholar 

  17. Champion HC et al. Gene transfer of endothelial nitric oxide synthase to the penis augments erectile responses in the aged rat. Proc Natl Acad Sci USA 1999; 96: 11648–11652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bivalacqua TJ et al. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int J Impot Res 2000; 12(Suppl 3): S8–S17.

    Article  PubMed  Google Scholar 

  19. Saenz de Tejada I et al. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med 1989; 320: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  20. Bloomgarden ZT . American Diabetes Association Annual Meeting, 1997. Endothelial dysfunction, neuropathy and the diabetic foot, diabetic mastopathy, and erectile dysfunction. Diabetes Care 1998; 21: 183–189.

    Article  CAS  PubMed  Google Scholar 

  21. Lue TF . Erectile dysfunction. N Engl J Med 2000; 342: 1802–1813.

    Article  CAS  PubMed  Google Scholar 

  22. Steger RW et al. Streptozotocin-induced deficits in sex behavior and neuroendocrine function in male rats. Endocrinology 1989; 124: 1737–1743.

    Article  CAS  PubMed  Google Scholar 

  23. Bivalacqua TJ et al. Gene transfer of endothelial nitric oxide synthase partially restores nitric oxide synthesis and erectile function in streptozotocin diabetic rats. J Urol 2003; 169: 1911–1917.

    Article  CAS  PubMed  Google Scholar 

  24. Bivalacqua TJ et al. Effect of combination endothelial nitric oxide synthase gene therapy and sildenafil on erectile function in diabetic rats. Int J Impot Res 2004; 16: 21–29.

    Article  CAS  PubMed  Google Scholar 

  25. Brain SD et al. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985; 313: 54–56.

    Article  CAS  PubMed  Google Scholar 

  26. Lippton HL et al. Vasodilator activity of human alpha-calcitonin gene-related peptide in the feline mesenteric vascular bed. Am J Hypertens 1988; 1: 124S–126S.

    Article  CAS  PubMed  Google Scholar 

  27. Champion HC et al. Comparison of responses to adrenomedullin and calcitonin gene-related peptide in the feline erection model. J Androl 1997; 18: 513–521.

    PubMed  Google Scholar 

  28. Champion HC et al. In vivo gene transfer of prepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation 2000; 101: 923–930.

    Article  CAS  PubMed  Google Scholar 

  29. Chattergoon NN et al. Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2005; 288: L202–L211.

    Article  CAS  PubMed  Google Scholar 

  30. van Rossum D, Hanisch UK, Quirion R . Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 1997; 21: 649–678.

    Article  CAS  PubMed  Google Scholar 

  31. Hirata Y et al. Calcitonin gene-related peptide receptor in cultured vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 1988; 151: 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  32. de Hoon JN et al. Calcitonin gene-related peptide: exploring its vasodilating mechanism of action in humans. Clin Pharmacol Ther 2003; 73: 312–321.

    Article  CAS  PubMed  Google Scholar 

  33. Qing X, Keith IM . Targeted blocking of gene expression for CGRP receptors elevates pulmonary artery pressure in hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2003; 285: L86–L96.

    Article  CAS  PubMed  Google Scholar 

  34. Hay DL et al. The pharmacology of CGRP-responsive receptors in cultured and transfected cells. Peptides 2004; 25: 2019–2026.

    Article  CAS  PubMed  Google Scholar 

  35. Stief CG, Wetterauer U, Schaebsdau FH, Jonas U . Calcitonin gene-related peptide: a possible role in human penile erection and its therapeutic application in impotent patients. J Urol 1991; 146: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  36. Wimalawansa SJ . Age-related changes in tissue contents of immunoreactive calcitonin gene-related peptide. Aging (Milano) 1992; 4: 211–217.

    CAS  Google Scholar 

  37. Kitazono T, Heistad DD, Faraci FM . Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo. Am J Physiol 1993; 265: H581–H585.

    CAS  PubMed  Google Scholar 

  38. Djamilian M, Stief CG, Kuczyk M, Jonas U . Follow-up results of a combination of calcitonin gene-related peptide and prostaglandin E1 in the treatment of erectile dysfunction. J Urol 1993; 149: 1296–1298.

    Article  CAS  PubMed  Google Scholar 

  39. Bivalacqua TJ et al. Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat. Biol Reprod 2001; 65: 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  40. Jeremy JY et al. Platelets, oxidant stress and erectile dysfunction: an hypothesis. Cardiovasc Res 2000; 46: 50–54.

    Article  CAS  PubMed  Google Scholar 

  41. Jones RW et al. Oxygen free radicals and the penis. Expert Opin Pharmacother 2002; 3: 889–897.

    Article  CAS  PubMed  Google Scholar 

  42. Bivalacqua TJ et al. Gene transfer of extracellular SOD to the penis reduces O2-* and improves erectile function in aged rats. Am J Physiol Heart Circ Physiol 2003; 284: H1408–H1421.

    Article  CAS  PubMed  Google Scholar 

  43. Azadzoi KM, Schulman RN, Aviram M, Siroky MB . Oxidative stress in arteriogenic erectile dysfunction: prophylactic role of antioxidants. J Urol 2005; 174: 386–393.

    Article  CAS  PubMed  Google Scholar 

  44. Gryglewski RJ, Palmer RM, Moncada S . Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456.

    Article  CAS  PubMed  Google Scholar 

  45. Fukai T, Folz RJ, Landmesser U, Harrison DG . Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 2002; 55: 239–249.

    Article  CAS  PubMed  Google Scholar 

  46. Beckman JS et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Squadrito GL, Pryor WA . Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998; 25: 392–403.

    Article  CAS  PubMed  Google Scholar 

  48. Stralin P, Karlsson K, Johansson BO, Marklund SL . The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995; 15: 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  49. Marklund SL . Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA 1982; 79: 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levin ED . Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging. Curr Alzheimer Res 2005; 2: 191–196.

    Article  CAS  PubMed  Google Scholar 

  51. Chacko S, Conti MA, Adelstein RS . Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci USA 1977; 74: 129–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mills TM et al. Vasoconstriction, RhoA/Rho-kinase and the erectile response. Int J Impot Res 2003; 15(Suppl 5): S20–S24.

    Article  CAS  PubMed  Google Scholar 

  53. Feng J et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 1999; 274: 37385–37390.

    Article  CAS  PubMed  Google Scholar 

  54. Gong MC et al. Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II. Am J Physiol Cell Physiol 2001; 281: C257–C269.

    Article  CAS  PubMed  Google Scholar 

  55. Chitaley K et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001; 7: 119–122.

    Article  CAS  PubMed  Google Scholar 

  56. Rees RW et al. Y-27632, an inhibitor of Rho-kinase, antagonizes noradrenergic contractions in the rabbit and human penile corpus cavernosum. Br J Pharmacol 2001; 133: 455–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang S et al. Increased contractility of diabetic rabbit corpora smooth muscle in response to endothelin is mediated via Rho-kinase beta. Int J Impot Res 2003; 15: 53–62.

    Article  CAS  PubMed  Google Scholar 

  58. Bivalacqua TJ et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 2004; 101: 9121–9126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knorr D . Serious Event on NIH Human Gene Transfer Protocol 9512-139. A Phase I Study of Adenovector-Mediated Gene Transfer to Liver in Adults With Partial Ornithine Transcarbamylase Deficiency. Bethesda, MD: memorandum, National Institutes of Health, Office of Recombinant DNA Activities, 21 September 1999.

  60. Brenner M . Gene transfer by adenovectors. Blood 1999; 94: 3965–3967.

    CAS  PubMed  Google Scholar 

  61. Friedenstein AJ et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974; 17: 331–340.

    Article  CAS  PubMed  Google Scholar 

  62. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  63. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  64. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  65. Deng W, Obrocka M, Fischer I, Prockop DJ . In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 2001; 282: 148–152.

    Article  CAS  PubMed  Google Scholar 

  66. Bianco P, Riminucci M, Gronthos S, Robey PG . Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180–192.

    Article  CAS  PubMed  Google Scholar 

  67. Kassem M . Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 2004; 6: 369–374.

    Article  CAS  PubMed  Google Scholar 

  68. Deng W et al. Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol 2003; 285: C1322–C1329.

    Article  CAS  PubMed  Google Scholar 

  69. Deng W et al. Engineering ex vivo-expanded marrow stromal cells to secrete calcitonin gene-related peptide using adenoviral vector. Stem Cells 2004; 22: 1279–1291.

    Article  CAS  PubMed  Google Scholar 

  70. Bivalacqua TJ et al. Gene therapy techniques for the delivery of endothelial nitric oxide synthase to the corpora cavernosa for erectile dysfunction. In: Aviv Hassid (ed). Nitric Oxide Protocols. Humana Press: Totowa, 2004, pp 173–186.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Kadowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Bivalacqua, T., Hellstrom, W. et al. Gene and stem cell therapy for erectile dysfunction. Int J Impot Res 17 (Suppl 1), S57–S63 (2005). https://doi.org/10.1038/sj.ijir.3901430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901430

Keywords

This article is cited by

Search

Quick links