Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α-Adrenergic agents modulate the activity of the spinal pattern generator for ejaculation

Abstract

Spinal cord transection at a thoracic level activates fictive ejaculation (FE) in the male rat. It has earlier been demonstrated that fictive motor patterns may be activated by pharmacological means and that the noradrenergic system seems to be particularly efficient in triggering locomotor fictive patterns in spinal animals. In the present study, the hypothesis was tested that the spinal noradrenergic system participates in the activation of the spinal generator for ejaculation (SGE). To this aim, the effect of the adrenergic agents, methoxamine, prazosin, clonidine, and yohimbine, upon FE was evaluated in spinal male rats using electromyographic techniques. The results obtained show that ejaculatory rhythmic patterns, accompanied by the expulsion of urethral contents and phasic penile movements, can be elicited by the intravenous (i.v.) injection of methoxamine or yohimbine. These drug-induced motor sequences appear superimposed to the intrinsic ejaculatory spinal rhythm. By contrast, i.v. injection of prazosin or clonidine blocked the expression of the spontaneous ejaculatory rhythmic pattern without inducing any other genital response. These data suggest that an increased noradrenergic tone, either by blockade of presynaptic α2-adrenoceptors or by stimulation of postsynaptic α1-adrenoceptors, results in the activation of the SGE. Present findings provide the evidence that the SGE might be importantly influenced by the noradrenergic system, which exerts a facilitatory control on the expression of the genital motor pattern of ejaculation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Delcomyn F . Neural basis of rhythmic behavior in animals. Science 1980; 210: 492–498.

    Article  CAS  Google Scholar 

  2. Grillner S . Neurobiological bases of the rhythmic motor acts in vertebrates. Science 1985; 228: 143–149.

    Article  CAS  Google Scholar 

  3. Arshavsky I . Cellular and network properties in the functioning of the nervous system: from central pattern generators to cognition. Brain Res Rev 2003; 41: 229–267.

    Article  Google Scholar 

  4. Carro-Juárez M, Cruz SL, Rodríguez-Manzo G . Evidence for the involvement of a spinal pattern generator in the control of the genital motor pattern of ejaculation. Brain Res 2003; 975: 222–228.

    Article  Google Scholar 

  5. Holmes GH, Chapple WD, Leipheimer RE, Sachs BD . Electromyographic analysis of the male rat perineal uscles during copulation and reflexive erections. Physiol Behav 1991; 49: 1235–1246.

    Article  CAS  Google Scholar 

  6. Rossignol S, Chau C, Brustein E, Giroux N, Bouyer L, Barbeau H et al. Pharmacological activation and modulation of the central pattern generator for locomotion in the cat. Ann NY Acad Sci 1999; 860: 346–359.

    Article  Google Scholar 

  7. Barbeau H, Chau C, Rossignol S . Noradrenergic agonists and locomotor training affect locomotor recovery after cord transection in adult cats. Brain Res Bull 1993; 30: 387–393.

    Article  CAS  Google Scholar 

  8. Chau C, Barbeau H, Rossignol S . Effects of intrathecal α1- and α2-noradrenergic agonist and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 1998; 79: 2941–2963.

    Article  CAS  Google Scholar 

  9. Marcoux J, Rossignol S . Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments. J Neurosci 2000; 20: 8577–8585.

    Article  CAS  Google Scholar 

  10. Clark JT, Smith ER, Davidson JM . Enhancement of sexual motivation in male rats by yohimbine. Science 1984; 225: 847–849.

    Article  CAS  Google Scholar 

  11. Clark JT, Smith ER, Davidson JM . Evidence for the modulation of sexual behavior by α-adrenoceptors in male rats. Neuroendocrinol 1985; 41: 36–43.

    Article  CAS  Google Scholar 

  12. Hernández GM, Oropeza MV, Guevara MA, Cervantes M, Moralí G . Effects of intrathecal administration of adrenergic agonists on the frequency of copulatory pelvic thrusting of the male rat. Arch Med Res 1994; 25: 419–425.

    Google Scholar 

  13. McIntosh TK, Barfield RJ . Brain monoaminergic control of male reproductive behavior. III norepinephrine and the post-ejaculatory refractory period. Behav Brain Res 1984; 12: 275–281.

    Article  CAS  Google Scholar 

  14. Meisel EL, Sachs BD . The physiology of male sexual behavior. In: Knobil E, Neill JD (eds.), The Physiology of Reproduction Vol. II, second edn. Raven Press Ltd: New York, 1994, pp. 4–106.

    Google Scholar 

  15. Rampin O . Pharmacology of alpha-adrenoceptors in male sexual function. Eur Urol 1999; 36: 103–106.

    Article  CAS  Google Scholar 

  16. Clark JT, Karla SP, Karla PS . Effects of a selective alpha1 adrenoceptor agonist, methoxamine, on sexual behavior and penile reflexes. Physiol Behav 1987; 40: 747–753.

    Article  CAS  Google Scholar 

  17. Clark JT . Suppression of copulatory behavior in male rats following central administration of clonidine. Neuropharmacol 1991; 30: 373–382.

    Article  CAS  Google Scholar 

  18. Carro-Juárez M, Rodríguez-Manzo G . Yohimbine reverses the exhaustion of the coital reflex in spinal male rats. Behav Brain Res 2003; 141: 43–50.

    Article  Google Scholar 

  19. Sachs BD, Garinello LD . Spinal pacemaker controlling sexual reflexes in male rats. Brain Res 1979; 171: 152–156.

    Article  CAS  Google Scholar 

  20. McKenna KE . Ejaculation. In: Knobil E, Neill JD (eds.), Encyclopedia of Reproduction, Vol. 1. Academic Press: London, 1999, pp. 1002–1008.

    Google Scholar 

  21. Barbeau H, Chau C, Rossignol S . Noradrenergic agonists and locomotor training affect locomotor recovery after cord transection in adult cats. Brain Res Bull 1993; 30: 387–393.

    Article  CAS  Google Scholar 

  22. Bracci E, Ballerini L, Nistri A . Spontaneous rhythmic burst induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. J Neurophysiol 1996; 75: 640–647.

    Article  CAS  Google Scholar 

  23. Barbeau H, Julien C, Rossignol S . The effects of clonidine and yohimbine on locomotion and cutaneous reflexes in the adult chronic spinal cat. Brain Res 1987; 437: 83–96.

    Article  CAS  Google Scholar 

  24. Carro-Juárez M, Rodríguez-Manzo G . Sensory and motor aspects of the coital reflex in the spinal male rat. Behav Brain Res 2000; 108: 97–103.

    Article  Google Scholar 

  25. Kojima M, Matsuura T, Amagai T, Iminashi I, Sano Y . Characteristic distribution of noradrenergic terminals on the anterior horn motoneurones innervating the perineal striated muscles in the rat. Anat Embriol 1985; 171: 267–273.

    Article  CAS  Google Scholar 

  26. Lyons WE, Fristchy JM, Grzanna R . The noradrenergic neurotoxin-DSP4 eliminates the coerulospinal projection but spares projections of the A5 and A7 groups to the ventral horn of the spinal cord. J Neurosci 1989; 9: 1481–1498.

    Article  CAS  Google Scholar 

  27. Monaghan EP, Breedlove SM . Brain sites projecting to the spinal nucleus of the bulbocavernosus. J Comp Neurol 1991; 307: 370–374.

    Article  CAS  Google Scholar 

  28. Rajaofetra N, Ridet JL, Poulat P, Marlier L, Sandillon I, Geffard M et al. Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline. J Neurocytol 1992; 21: 481–494.

    Article  CAS  Google Scholar 

  29. Schroder HD, Skagerberg G . Catecholamine innervation of the caudal spinal cord in the rat. J Comp Neurol 1985; 242: 358–368.

    Article  CAS  Google Scholar 

  30. Marshall KC . Catecholamines and their action in the spinal cord. In: Davidoff RA (ed.), Handbook of the Spinal Cord: Pharmacology, Vol. 1. Marcel Dekker: New York, Basel, 1993, pp. 275–328.

    Google Scholar 

  31. Kjaerulff O, Kiehn O . Crossed rhythmic synaptic input to motoneurones during selective activation of the contralateral spinal locomotor network. J Neurosci 1997; 17: 9433–9447.

    Article  CAS  Google Scholar 

  32. Otah Y, Dubuc R, Grillner S . A new population of neurons with crossed axons in the lamprey spinal cord. Brain Res 1981; 564: 143–148.

    Google Scholar 

  33. Rose RD, Collins WF . Crossing dendrites may be a substrate for synchronized activation of penile motoneurones. Brain Res 1985; 337: 373–377.

    Article  CAS  Google Scholar 

  34. Yaici ED, Rampin O, Calas A, Justin A, McKenna KE, Leclerc P et al. Giuliano F α2A and α2C adrenoceptors on spinal neurones controlling penile erection. Neuroscience 2002; 114: 945–960.

    Article  CAS  Google Scholar 

  35. Foster AM, Sengelaub DR . Bilateral organization of unillaterally generated activity in lumbar spinal motoneurons of the rat. Brain Res 2004; 1009: 98–109.

    Article  CAS  Google Scholar 

  36. Timmermans PBMW, van Zwieten PA . α2 adrenoceptors: classification, localization, mechanisms and targets for drugs. J Med Chem 1982; 25: 1389–1401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Angeles Ceja for technical assistance and animal caring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Carro-Juárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carro-Juárez, M., Rodríguez-Manzo, G. α-Adrenergic agents modulate the activity of the spinal pattern generator for ejaculation. Int J Impot Res 18, 32–38 (2006). https://doi.org/10.1038/sj.ijir.3901393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901393

Keywords

This article is cited by

Search

Quick links