Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The effect of sedimentary cover on the flexural strength of continental lithosphere

An Erratum to this article was published on 01 April 1998

This article has been updated

Abstract

The factors that control the flexural rigidity — or effective elastic thickness (EET) — of continental lithosphere have been extensively studied over the past two decades. Using EET estimates derived from the analysis of topography, basin structures and gravity anomalies, several authors1,2,3,4,5 have shown that crustal thickness, geothermal gradient, strain rate, rheology and plate curvature all affect the flexural strength of continents. Recognition that certain combinations of these parameters result in a significant reduction of flexural strength caused by decoupling of the crust and the upper mantle3,5 has been a critical step in understanding why many continental areas have estimated EETs that are thin compared with the total mechanical thickness of the continental lithosphere5. Here we develop a semi-analytical model of the EET through a parametrization of the yield stress envelope6,7 that includes the effects of crust–mantle decoupling. We perform a detailed comparison of EET estimates at foreland basins and mountain belts to values predicted by our model and find that, to predict the EET estimates successfully, we need to take into account the effect of the sediment cover and to use a strong plagioclase-controlled rheology. The effect of sediment cover is to weaken the lithosphere because of the lower density of sediments relative to crystalline crust5,8,9 and by thermally insulating the lower crust9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YSE of the continental lithosphere defining the maximum stress for which the lithosphere behaves like an elastic solid.
Figure 2: a, For 1,000-Myr-old lithosphere with a crust 35 km thick (dotted line), the EET decreases as curvature increases, but the lithosphere does not decouple.
Figure 3: Plot of the predicted values of EET against observed values of EET.

Similar content being viewed by others

Change history

  • 01 April 1998

    Nature 389, 476–479 (1997) The last term on the right-hand side of equation (1) should read to make it consistent with an integration over the variable z rather than over the function u(z).

References

  1. Karner, G. D. & Watts, A. B. Gravity anomalies and flexure of the lithosphere at mountain ranges. J.Geophys. Res. 88, 10449–10477 (1983).

    Article  ADS  Google Scholar 

  2. Kusznir, N. & Karner, G. D. Dependence of the flexural rigidity of the continental lithosphere on rheology and temperature. Nature 316, 138–142 (1985).

    Article  ADS  Google Scholar 

  3. McNutt, M. K., Diament, M. & Kogan, M. G. Variations of elastic plate thickness at continental thrust belts. J. Geophys. Res. 93, 8825–8838 (1988).

    Article  ADS  Google Scholar 

  4. Royden, L. H. The tectonic expression slab pull at continental convergent boundaries. Tectonics 12, 303–325 (1993).

    Article  ADS  Google Scholar 

  5. Burov, E. G. & Diament, M. The effective elastic thickness of the continental lithosphere: what does it really mean? J. Geophys. Res. 100, 3905–3927 (1995).

    Article  ADS  Google Scholar 

  6. Goetze, C. & Evans, B. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc. 59, 463–478 (1979).

    Article  ADS  Google Scholar 

  7. Bodine, J. H., Steckler, M. S. & Watts, A. B. Observations of flexure and the rheology of the oceanic lithosphere. J. Geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  8. Cloetingh S., Wortel, M. J. R. & Vlaar, N. J. Evolution of passive continental margins and initiation of subduction zones. Nature 297, 139–142 (1982).

    Article  ADS  Google Scholar 

  9. Steckler, M. S. & ten Brink, U. S. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region. Earth Planet. Sci. Lett. 79, 120–132 (1986).

    Article  ADS  Google Scholar 

  10. Karner, G. D. Sediment blanketing and the flexural strength of extended continental lithosphere. Basin Res. 3, 177–185 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. Molnar, P. & Tapponnier, P. Apossible dependence of tectonic strength on the age of the crust in Asia. Earth Planet. Sci. Lett. 52, 107–114 (1981).

    Article  ADS  Google Scholar 

  12. Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995).

    Article  ADS  Google Scholar 

  13. Kirby, S. H. & Kronenberg, A. K. Rheology of the lithosphere. Rev. Geophys. 25, 1219–1244 (1987).

    Article  ADS  Google Scholar 

  14. Zhang, Y.-S. & Tanimoto, T. High-resolution global upper mantle structure and plate tectonics. J.Geophys. Res. 98, 9793–9823 (1993).

    Article  ADS  Google Scholar 

  15. Sclater, J. G. & Christie, P. A. F. Continental stretching; an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin. J. Geophys. Res. 85, 3711–3739 (1980).

    Article  ADS  Google Scholar 

  16. Quinlan, G. M. & Beaumont, C. Appalachian thrusting, lithospheric flexure, and the Paleozoic stratigraphy of the Eastern interior of North America. Can. J. Earth Sci. 21, 973–996 (1984).

    Article  ADS  Google Scholar 

  17. Stewart, J. & Watts, A. B. Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res. 102, 5327–5353 (1997).

    Article  ADS  Google Scholar 

  18. Turcotte, D. L. & Shubert, G. Geodynamics. Applications of Continuum Physics to Geological Problems, 131–133 (Wiley, New York, (1982)).

    Google Scholar 

  19. Snyder, D. B. & Barazangi, M. Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics 5, 361–373 (1986).

    Article  ADS  Google Scholar 

  20. Watts, A. B., Lamb, S. H., Fairhead, J. D. & Dewey, J. F. Lithospheric flexure and bending of the central Andes. Earth Planet. Sci. Lett. 134, 9–21 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Royden, L. H. & Karner, G. D. Flexure of lithosphere beneath Apennine and Carpathian foredeep basins: evidence for an insufficient topographic load. Am. Ass. Petrol. Geol. Bull. 68, 704–712 (1984).

    Google Scholar 

  22. Macario, A., Malinverno, A. & Haxby, W. F. On the robustness of elastic thickness estimates obtained using the coherence method. J. Geophys. Res. 100, 15163–15172 (1995).

    Article  ADS  Google Scholar 

  23. Royden, L. H. & Burchfiel, B. C. Are systematic variations in thrust belt style related to plate boundary processes? (The western Alps versus the Carpathians). Tectonics 8, 51–61 (1989).

    Article  ADS  Google Scholar 

  24. Seber, D., Valve, M., Sandvol, E., Steer, D. & Barazangi, M. Middle East Tectonics: applications of Geographic Information Systems (GIS). GSA Today 7(2), 1–6 (1997).

    Google Scholar 

  25. Koop, W. J. & Stoneley, R. Subsidence history of the Middle East Zagros Basin, Permian to Recent. Phil. Trans. R. Soc. Lond.A 305, 149–168 (1982).

    Article  ADS  Google Scholar 

  26. Fan, P. & Ma, B. L. Generan Petroleum Geology of the Tarim Basin, Vol. 1, 1–21 (Academia Sinica, Science Press, Beijing, (1990)).

    Google Scholar 

  27. Teng, J. W. Geophysical Fields and Hydrocarbon Prospects of the Tarim Basin, Vol. 2, 24–40 (Academia Sinica, Science Press, Beijing, (1991)).

    Google Scholar 

  28. Verma, R. K. Gravity field and nature of continent–continent collision along the Himalayas. Phys. Chem. Earth 18, 385–403 (1991).

    Article  Google Scholar 

  29. Wigger, J. W. et al. in Tectonics of the Southern Central Andes, Structure and Evolution of an Active Continental Margin (eds Reutter, K.-J., Scheuber, E. & Wigger, P. J.) 23–48 (Springer, Berlin, (1994)).

    Book  Google Scholar 

  30. Dunn, J. F., Hartshorn, K. G. & Hartshorn, P. W. in Petroleum Basins of South America (eds Tankard, A.J., Suárez Soruco, R. & Welsink, H. J.) 523–543 (Am. Ass. Petrol. Geol. Mem. 62, (1995)).

    Google Scholar 

  31. Hinze, W. J. & Braile, L. W. in The Geology of North America, Vol. D-2(Sedimentary Cover–North American Craton: U.S.) 5–24 (Geological Society of America, Boulder, CO, (1988)).

    Google Scholar 

  32. Rankin, D. W. et al. in Centenial Continent/Ocean Transect Vol. E-4 Central Kentucky to Carolina Trough 2 sheets (Geological Society of America, Boulder, CO, (1991)).

    Google Scholar 

  33. Roure, F., Roca, E. & Sassi, W. The Neogene evolution of the outer Carpathian flysch units (Poland, Ukraine and Romania): kinematics of a foreland/fold-and-thrust belt system. Sediment. Geol. 86, 177–201 (1993).

    Article  ADS  Google Scholar 

  34. Raileanu, V., Talos, D., Varodin, V. & Stiopol, D. Crustal seismic reflection profiling in Romania on the Urziceni–Mizil line. Tectonophysics 223, 401–409 (1993).

    Article  ADS  Google Scholar 

  35. Buness, H. in Joint Interpretation of Geophysical and Geological Data Applied to Lithospheric Studies (eds Giese, P. et al.) 193–215 (Kluwer, Dordrecht, (1991)).

    Book  Google Scholar 

  36. Ori, G. G. Continental depositional systems of the Quaternary of the Po plain (northern Italy). Sediment Geol. 83, 1–14 (1993).

    Article  ADS  Google Scholar 

  37. Mueller, S. in Mountain Building Processes (ed. Hsue, K. J.) 181–199 (Academic, London, (1982)).

    Google Scholar 

  38. Khale, H. G., Klingele, E., Mueller, S. & Egloff, R. The variation of crustal thickness across the Swiss Alps based on gravity and explosion seismic data. Pure Appl. Geophys. 114, 479–494 (1976).

    Article  ADS  Google Scholar 

  39. Beloussov, V. V. et al. Structure of the lithosphere along the Deep Seismic Sounding profile: Tien Shan–Pamirs–Karakorum–Himalayas. Tectonophysics 70, 193–221 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Coakley, C. Ebinger, R. Newman and N. White for constructive comments that improved the paper. We thank the NSF Earth Sciences, and F. Brigaud and Elf-Aquitaine Exploration Production, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc L. Lavier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavier, L., Steckler, M. The effect of sedimentary cover on the flexural strength of continental lithosphere. Nature 389, 476–479 (1997). https://doi.org/10.1038/39004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39004

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing