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A multistep model for pancreatic adenocarcinoma
has been proposed recently. In this model, well-
defined, noninvasive ductal lesions are recognized
as precursors of invasive cancer and have been clas-
sified under the nomenclature of pancreatic intra-
epithelial neoplasia, or PanIN. Increasing evidence
suggests that PanINs represent true neoplasms of
the pancreatic ductal epithelium, accumulating his-
tologic and genetic abnormalities in their progres-
sion toward invasive cancer. We have constructed a
tissue microarray containing 55 PanIN lesions of all
histologic grades in order to perform a multicom-
ponent analysis of the pancreatic adenocarcinoma
progression model. The protein products of 14
genes encompassing a variety of functional classes,
such as tumor suppressor genes (p53, Smad4/
Dpc4), oncogenes (�-catenin), cell cycle antigens
(p16, cyclin D1), proliferation antigens (Ki-67, topo-
isomerase II alpha), and epithelial apomucins
(MUC1, MUC2, MUC5), as well as “novel” genes
described as differentially up-regulated in invasive
pancreas cancer by global microarray expression
analysis (mesothelin, prostate stem cell antigen, fas-
cin, and 14-3-3�), were analyzed by immunohisto-
chemistry on the PanIN tissuemicroarray. Compar-
ison of the results from the current study with
previously published data performed on routine
histologic sections of PanINs demonstrates that tis-
sue microarrays are a valid platform for molecular

analysis not only of invasive cancers but of precur-
sor lesions as well. In addition, this study demon-
strates that molecular abnormalities in PanINs are
not randombut can usually be stratified into “early”
changes (e.g., expression of MUC5 and prostate
stem antigen, or loss of p16), “intermediate”
changes (e.g., expression of cyclin D1), and “late”
changes (e.g., expression of p53, proliferation anti-
gens, MUC1, mesothelin, and 14-3-3�, or loss of
Smad4/Dpc4). Understanding the molecular patho-
genesis of precursor lesions of invasive pancreatic
adenocarcinomas using a high-throughput tissue
microarray–based approach is a valuable adjunct to
designing rational strategies for early detection of
this lethal neoplasm.
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Adenocarcinoma of the pancreas affects approxi-
mately 29,000 individuals each year in the United
States, and nearly all patients die within months of
diagnosis (1). Only a minority of cases is amenable
to surgery, and regrettably, surgical resection of
localized pancreatic cancer is seldom curative.
Thus, prevention and early detection of pancreatic
adenocarcinoma remain the best hope for a cure,
because once established, this disease is nearly al-
ways fatal (2).
A multistep model has recently been proposed

for pancreatic adenocarcinomas, in which nonin-
vasive precursor lesions in the pancreatic ducts un-
dergo histologic and genetic progression toward
invasive cancer (3, 4). These morphologically dis-
tinct, noninvasive lesions have been classified un-
der a uniform nomenclature scheme termed pan-
creatic intraepithelial neoplasia, or PanIN. We and
others have demonstrated that PanINs share many
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of the genetic aberrations associated with invasive
adenocarcinomas, underscoring their classification
as “neoplasms” rather than as a reactive/hyperplas-
tic process (5–9). Some of the genetic alterations are
nearly ubiquitous (e.g., telomere shortening) (10),
suggesting that these are early events in the ductal
epithelium, whereas others, such as loss of function
of the tumor suppressor gene BRCA2, occur only in
the most advanced PanIN lesions that precede in-
vasive cancer (11). Understanding the molecular
mechanisms that facilitate PanIN progression to-
ward invasive adenocarcinomas is critical, because
these noninvasive neoplasms represent one of the
best targets available for early detection and che-
moprevention strategies for pancreatic cancer (12).

We have recently explored the global expression
profiles of invasive pancreatic adenocarcinomas
with three different gene expression platforms (se-
rial analysis of gene expression, oligonucleotide mi-
croarrays, and cDNA microarrays) (13–15). These
studies have identified a multitude of genes that are
overexpressed at the transcript level in pancreatic
cancer compared with in normal ductal epithelium.
We have subsequently validated the “cancer-
specific” expression of a subset of these markers at
the protein level by immunohistochemistry (16).
However, the expression of these tumor markers in
the noninvasive precursor ductal lesions remains
largely unexplored. The advent of TMAs for high-
throughput expression profiling in archival tissues
has greatly facilitated the identification of novel
diagnostic and prognostic markers in multiple can-
cer types (17–22). We have constructed a TMA
made up entirely of noninvasive ductal lesions (Pa-
nIN TMA) for multicomponent profiling of the pan-
creatic adenocarcinoma progression model. Using
a TMA-based approach, we herein validate molec-
ular abnormalities previously reported in routine
histologic sections of PanINs, as well as examine
the expression of novel cellular markers that have
been discovered by global gene expression profiling
of pancreatic adenocarcinomas.

MATERIALS AND METHODS

Tissue samples were obtained from the surgical
pathology archives of the Department of Pathology
at the Johns Hopkins University School of Medi-
cine. Formalin-fixed, paraffin-embedded blocks
were retrieved from 44 patients who underwent
pancreaticoduodenectomy (Whipple resection) for
pancreatic ductal adenocarcinoma. PanIN lesions
were selected by two authors (AM and RHH) and
classified into PanIN-1A, PanIN-1B, PanIN-2, and
PanIN-3 using previously described criteria (3). For
TMA construction, representative areas containing
morphologically defined PanINs were circled on

the glass slides and used as a template. The PanIN
TMA was constructed using a manual Tissue
Puncher/Arrayer (Beecher Instruments, Silver
Spring, MD) as previously described (10). For each
PanIN, a 1.4-mm core was punched from the donor
block to ensure that the entire duct lesion and
adequate surrounding tissue could be incorporated
into the spot. A total of 99 cores (61 PanINs, 11
intra- and interlobular pancreatic ducts, and 27
control tissue cores from various extrapancreatic
organs) were arrayed on the recipient block. Six
PanIN lesions were not suitable for evaluation be-
cause of either loss of tissue cores or exhaustion of
the duct lesion in deeper sections, and these were
excluded from analysis. The remaining 55 PanIN
lesions comprised 16 PanIN 1A, 18 PanIN 1B, 14
PanIN 2, and 7 PanIN 3 lesions).
Immunohistochemistry was performed as previ-

ously described (16). Briefly, unstained 5-�m sec-
tions were cut from the paraffin block selected and
deparaffinized by routine techniques. The TMAs
were placed in 200-mL of Target Retrieval Solution,
pH 6.0 (Envision Plus Detection Kit, DAKO) for 20
minutes at 100° C. After cooling for 20 minutes,
slides were quenched with 3% H2O2 for 5 minutes
before incubating with primary antibody using the
Dako Autostainer. The list of primary antibodies
used, with respective dilutions and source of anti-
bodies, is given in Table 1. Labeling was detected
with the Dako Envision system according to the
manufacturer’s protocol. Negative controls (prima-
ry antibody replaced by serum from appropriate
species) were used for each antibody in each run.
Internal positive controls were available from the
plethora of pancreatic and extrapancreatic control
cores on the PanIN TMA itself (for example, basal
cells in the prostate express prostate stem cell an-
tigen; normal pancreatic ductal epithelium ex-
presses Dpc4, etc.); additionally, external controls
were examined with each run (e.g., breast carci-
noma for MUC1, colonic adenocarcinoma for
MUC2, gastric tissue for MUC5, etc.). For all immu-
nohistochemical stains, the pattern of staining in

TABLE 1. Immunohistochemical Antibodies

Antibody Clone Dilution Source

p53 DO-7 1:1000 Dako, Carpinteria, CA
Dpc4 B8 1:100 Santa Cruz Bio, Santa Cruz, CA
p16 ZJ11 1:50 Novacastra (UK)
Cyclin D1 1:50 Oncogene, Cambridge, MA
Beta catenin 1:1000 Transduction, Lexington, KY
Ki-67 (MIB1) 1:1000 Dako
Topo II 1:100 Novacostra (UK)
Muc1 Ma645 1:100 Novacostra (UK)
Muc2 Ccp58 1:100 Novacostra (UK)
Muc5 CLH2 1:50 Novacostra (UK)
Fascin 55K-2 1:100 Dako
Mesothelin 5B2 1:20 Novacostra (UK)
PSCA 1:700 Robert Reiter, UCLA (gift)
14-3-3� 1:100 NeoVision, Fremont, CA
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the normal pancreatic ductal epithelium was con-
sidered to be the baseline for comparison with pro-
gressive PanIN lesions.

The following scoring criteria were used for as-
sessment of immunolabeling: for the 11 proteins
that are not expressed or minimally expressed in
the normal pancreatic ductal epithelium (p53, cy-
clin D1, Ki-67, topoisomerase II � [topo II], MUC1,
MUC2, MUC5, mesothelin, fascin, prostate stem
cell antigen [PSCA], and 14-3-3�), immunolabeling
in �5% of cells within a PanIN lesion was consid-
ered negative; immunolabeling in 5–25% was con-
sidered focal, and �25% labeling was considered
diffuse. Only appropriate subcellular localization of
detectable signal was considered for assessment of
percentage staining (for example, only nuclear
staining was counted for p53, cyclin D1, Ki-67, and
topo II, and cytoplasmic or membrane labeling was
counted for the rest). Complete absence of cyto-
plasmic and nuclear expression of Dpc4, or com-
plete absence of nuclear expression of p16, was
considered negative (abnormal) for the respective
stain, as previously described (8, 23, 24). Finally, the
expression of �-catenin, which is normally present
only in a membranous distribution, was graded
based on percentage of cells with strong nuclear
and cytoplasmic labeling, as previously described
(25).

Statistical analyses for significant differences in
immunohistochemical abnormalities between
high-grade (PanIN 2 and 3) and low-grade (PanIN
1A and 1B) lesions were performed using two-tailed
Fisher’s exact test, with a significant P value set as
�.05. All statistical comparisons were performed
using the Analyze-it add-in for Microsoft Excel.

RESULTS AND DISCUSSION

A summary of immunohistochemical abnormal-
ities in the 55 PanIN lesions in this study is tabu-

lated in Table 2 and is pictorially illustrated using
Eisen’s TREEVIEW software (http://rana.lbl.gov/
EisenSoftware.htm) in Figure 1. The results for the
14 individual proteins are described in the ensuing
discussion, in the context of each protein’s func-
tional class and relevant literature.

Tumor Suppressor Genes (p53 and Dpc4)
P53 is commonly inactivated by mutations in

invasive pancreatic adenocarcinomas, with a fre-
quency of 50–75% of cases, depending on the series
(26–28). Immunohistochemical detection of nu-
clear p53, as a surrogate marker for mutation, usu-
ally demonstrates a slightly lower frequency of ab-
normalities (~30–50%) (29–31), consistent with the
lower sensitivity of this technique. Nuclear overex-
pression of p53 has also been reported in PanIN
lesions in the pancreas. For example, DiGiuseppe et
al. (31) found abnormalities in p53 labeling in 2 of
17 (12%) histologically high-grade lesions (carcino-
mas in situ, equivalent to PanIN 3 in the current
classification scheme). In contrast, all histologically
lower-grade duct lesions labeled normally, suggest-
ing that p53 gene inactivation is a late event in
genetic progression in pancreatic ducts. Similarly,
Apple et al. (32) reported p53 accumulation in 20%
of “dysplastic” ductal lesions but in no “ductal hy-
perplasias.” In concert with these findings, we re-
port diffuse nuclear overexpression of p53 (�25%
nuclei) in 4 of 7 (57%) PanIN 3 lesions but in no
normal ducts, PanIN 1A, PanIN 1B, or PanIN 2 foci.
Thus, we confirm that p53 mutation, as assessed by
nuclear overexpression of p53 protein, is a “late”
event in the progression model of pancreatic ade-
nocarcinoma, occurring only in the most advanced
PanIN lesions (Fig. 2).

The tumor suppressor gene SMAD4 (Small Moth-
ers Against Decapentaplegic 4) or DPC4 (Deleted in
Pancreatic Carcinoma 4) located on chromosome

TABLE 2. Summary of Immunohistochemical Abnormalities in PanIN Lesions

Protein
Normal Duct

Epithelium
PanIN 1A PanIn 1B PanIn 2 PanIN 3 P-value*

p16 Present 5/16 (31%) 8/18 (44%) 7/14 (50%) 6/7 (85%) NS
MUC5 Absent 12/16 (75%) 13/18 (72%) 13/14 (93%) 7/7 (100%) NS
PSCA Absent 7/16 (43%) 5/18 (28%) 6/14 (43%) 4/7 (57%) NS
Fascin Absent 4/16 (25%) 5/18 (28%) 8/14 (57%) 4/7 (57%) 0.0471
14-3-3� Absent 2/16 (13%) 2/18 (11%) 3/14 (21%) 6/7 (85%) 0.0220
MUC1 Present 1/16 (6%) 1/18 (5%) 6/14 (43%) 6/7 (85%) �0.0001
Mesothelin Absent 1/16 (6%) 0 2/14 (14%) 1/7 (14%) NS
Cyclin D1 Absent 0 0 4/14 (29%) 4/7 (57%) 0.0003
Ki-67 Absent 0 0 1/14 (7%) 5/7 (71%) 0.0037
Topo II Absent 0 0 1/14 (7%) 5/7 (71%) 0.0037
p53 Absent 0 0 0 4/7 (57%) 0.0351
Dpc4/Smad4 Present 0 0 0 2/7 (28%) NS
MUC2 Absent 0 0 0 0 NS
Beta-catenin (nuclear) Absent 0 0 0 0 NS

* P values represent the comparison of immunohistochemical abnormalities between “low grade” (PanIN 1A and 1B) versus “high grade” (PanIN 2 and
3) using two-tailed Fisher exact test.
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18q, is a member of the transforming growth factor
� (TGF�) family (33). Inactivation of SMAD4/DPC4
by homozygous deletions, or a combination of in-
tragenic mutation and allelic loss of heterozygosity,
is present in approximately 55% of invasive pancre-

atic adenocarcinomas (33). Immunohistochemical
labeling for the SMAD4/DPC4 gene product has re-
cently been shown to mirror SMAD4/DPC4 gene
status (34). Wilentz et al. (8) studied a large series of
routine histologic sections from pancreata using
the B-8 anti-Dpc4 antibody. Dpc4 expression was
intact in all of the low-grade duct lesions that they
examined, whereas 30% of the histologically high-
grade lesions had a complete loss of Dpc4 expres-
sion. By using the PanIN classification scheme on
our PanIN TMA, we detected complete loss of Dpc4
expression in 2 of 7 (28%) PanIN 3 lesions. Dpc4
expression was intact in all of the intra- or interlob-
ular ducts, PanIN 1A, PanIN 1B, and PanIN 2 foci
examined. Our findings are virtually identical to
those findings of Wilentz et al. (8) and confirm that,
similar to the case of the p53 gene, inactivation of
the DPC4 gene appears to be a “late” event in the
genetic progression of pancreatic cancer.

Cell Cycle Regulatory Genes (p16 and Cyclin D1)
The p16 gene on chromosome 9p encodes for a

regulator of the cell cycle, and it is inactivated by
homozygous deletions, mutations, or methylation
of the p16 promoter in approximately 95% of inva-
sive pancreatic adenocarcinomas (35, 36). Recent
evidence suggests that similar mechanisms for p16
gene inactivation are also active in the noninvasive
pancreatic ductal lesions, and that there is a pro-
gressive accumulation of these genetic abnormali-
ties with histologic progression in the ducts (9, 37).
Loss of nuclear p16 protein expression is consid-
ered to be a reliable surrogate for complete inacti-
vation of p16 gene function (23, 24). Wilentz et al.
(7), using immunohistochemical labeling for the
p16 gene product on routine histologic sections,
showed that 30% of “flat duct lesions without sig-
nificant atypia” (equivalent to PanIN 1A), 27% of
“papillary duct lesions without significant atypia”
(equivalent to PanIN 1B), 55% of “papillary duct
lesions with atypia” (equivalent to PanIN 2), and
71% of carcinoma in situ (PanIN 3) lesions had loss
of expression of nuclear p16. In our TMA-based
study, we found that 5 of 16 (31%) PanIN 1A, 8 of 18
(44%) PanIN 1B, 7 of 14 (50%) PanIN 2, and 6 of 7
(85%) PanIN 3 lesions had loss of nuclear p16. Thus,
we were able to confirm that p16 inactivation is a
common and “early” event in the multistep model
of pancreatic adenocarcinoma, that the frequency
of this loss increases with increasing grades of dys-
plasia, and that it precedes both p53 and Dpc4
inactivation. Nevertheless, loss of one cell cycle
checkpoint protein appears to be inadequate to
initiate uncontrolled cell division in PanIN lesions,
as demonstrated by the concomitantly examined
proliferation antigens (see below). It is likely that
because of the redundancy of cell cycle checkpoint

FIGURE 1. Pictorial representation of progressive molecular
abnormalities in PanIN lesions depicted using Eisen’s TREEVIEW
software (http://rana.lbl.gov/EisenSoftware.htm). Individual PanIN
lesions are in rows, and the 14 proteins examined are in columns.
PanIN 1A lesions are designated as A1–A16; PanIN 1B lesions, as B1–
B18; PanIN 2 lesions, as C1–C14, and PanIN 3 lesions, as D1–D7. The
original TREVIEW color scheme for relative gene expression is retained
for designating relative protein expression in this figure. Thus, green
implies no expression, red designates diffuse expression, and brown
designates focal expression. Depending on the protein of interest,
therefore, red color could imply retained normal expression (e.g., Dpc4/
Smad4), or aberrant overexpression (MUC5, PSCA, etc.).
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controls, more than one “hit” is required for initi-
ation of deregulated proliferation.

The cyclin D1 or PRAD1 gene, located on chro-
mosome 11q13, is a positive regulator of the cell

cycle. Overexpression of cyclin D1 protein has been
documented in several human cancers, such as
breast, lung, and colon carcinoma, and in mantle
cell lymphoma (38–41). Between 60% and 85% of

FIGURE 2. Representative photomicrographs illustrating immunohistochemical abnormalities in various histologic categories of PanIN lesions. The
protein of interest is designated in rows, and the PanIN histologic category is designated in columns. Row 1, absence of nuclear p53 labeling in
PanIN 1A, 1B, and 2, with diffuse nuclear labeling in PanIN 3. Row 2, absence of nuclear MIB-1 labeling in PanIN 1A and 1B, with focal nuclear
labeling in PanIN 2 and 3. Row 3, absence of MUC1 labeling in PanIN 1A and 1B; note the apical labeling in normal ducts subjacent to PanIN
lesions. In contrast, strong and diffuse apical labeling is seen in PanIN 2 and 3 lesions. Row 4, unlike the case with MUC1, MUC5 labeling is present
in low-grade PanIN 1A and 1B lesions, with persistent expression in PanIN 2 and 3 lesions. Row 5, absence of fascin expression in PanIn1A, with
focal or diffuse labeling in subsequent PanIN 1B, 2 and 3 lesions; note intense diffuse cytoplasmic labeling in PanIN 3 lesion. Row 6, absence of 14-
3-3� labeling in PanIN 1A and 1B lesions, with expression in PanIN 2 and 3 lesions.
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invasive pancreatic adenocarcinomas demonstrate
nuclear overexpression of cyclin D1 protein by im-
munohistochemistry (42–44). Cyclin D1 overex-
pression in pancreatic cancer is associated with a
poor prognosis and decreased survival (42, 45),
whereas inhibition of cyclin D1 expression results
in increased chemosensitivity and decreased ex-
pression of multiple chemoresistance genes (46). In
the current study, focal or diffuse nuclear overex-
pression of cyclin D1 was seen in 0 of 11 normal
pancreatic ducts, 0 of 16 PanIN 1A, 0 of 18 PanIN B,
4 of 14 (29%) PanIN 2, and 4 of 7 (57%) PanIN 3
lesions. Based on nuclear cyclin D1 expression in a
third of PanIN 2 lesions, cyclin D1 abnormalities
would best be classified as an “intermediate” event
in the multistage progression of pancreatic adeno-
carcinoma, preceding p53 mutations and inactiva-
tion of Dpc4 in a subset of cases.

Oncogene (�-Catenin)
Beta-catenin is a target of the canonical wnt sig-

naling pathway, implicated in both development
and tumorigenesis. Oncogenic mutations of the
�-catenin gene, which result in stabilization and
nuclear translocation of �-catenin protein, have
been reported in a variety of human cancers.
�-catenin mutations are uncommon in pancreatic
adenocarcinomas (47) but are frequent in nonduc-
tal neoplasms of the pancreas (solid pseudopapil-
lary tumors, pancreatoblastomas, and acinar cell
carcinomas) (25, 48, 49). All 11 normal and 55 Pa-
nIN foci examined in this study demonstrated nor-
mal membranous expression of �-catenin, with no
convincing cytoplasmic or nuclear expression in
any lesion. The complete absence of abnormal
�-catenin expression in PanIN lesions reiterates the
existence of two distinct, genetically divergent
pathways of neoplasia in the pancreas, one result-
ing in the more common, conventional ductal ad-
enocarcinomas and the other resulting in the less
common nonductal neoplasms.

Proliferation Antigens (Ki-67 and Topo II)
Unchecked proliferation is an intrinsic feature of

neoplasia. The proliferation antigen Ki-67, as de-
tected by the monoclonal antibody MIB-1, is ex-
pressed in the majority of invasive adenocarcino-
mas of the pancreas (50, 51), whereas we have
demonstrated up-regulation of topo II in invasive
pancreatic cancers by using both oligonucleotide
and cDNA microarrays (13, 15). The expression of
one of these proliferation antigens—Ki-67—has
been systematically examined by Klein et al. (52) in
routine histologic sections of PanINs. In their study,
Klein et al. (52) found increasing Ki-67–labeling in-
dices with increasing grades of dysplasia in PanINs;

thus, PanIN 1A had a labeling index of 0.69%, PanIN
1B, of 2.33%, PanIN 2, of 14.08%, and PanIN 3, of
22.01%. There are no studies to date examining
topo II expression in the precursor lesions of pan-
creatic adenocarcinoma. In the current study, no
normal pancreatic ducts, PanIN 1A, or PanIN 1B
expressed Ki-67 or topo II, whereas only focal nu-
clear Ki-67 and topo II expression was seen in 1 of
14 (7%) PanIN 2 and 5 of 7 (71%) PanIN 3 lesions;
there was complete concordance between Ki-67
and topo II expression in the PanIN lesions. Our
percentages for Ki-67 labeling are discordant from
those in the study of Klein et al. (52) because we did
not use a nuclear labeling index but rather calcu-
lated expression based on a two-tier focal (5–25%)
versus diffuse (�25%) labeling scheme. In their
study, Klein et al. (52) found a mean Ki-67–labeling
index of 22% for PanIN 3, which is consistent with
the absence of diffuse labeling in the PanIN 3 le-
sions in our series. Cyclin D1 expression demon-
strated a marginally better concordance with pro-
liferation than p53; 5 of 6 (83%) of Ki-67– and topo
II–positive lesions also overexpressed nuclear cy-
clin D1, whereas 4 of 6 (67%) concomitantly over-
expressed p53. There was no correlation between
p16 loss and Ki-67/topo II overexpression, given the
discordance in the timing of their occurrence (early
versus late) in the multistep model of pancreatic
cancer progression.

Epithelial Mucins (MUC1, MUC2, and MUC5)
The apomucins MUC1, MUC2 and MUC5 are

frequently overexpressed in epithelial cancers, par-
ticularly those arising in the gastrointestinal tract
and pancreas (53–56). MUC1 is the principal pan-
creatic mucin, being expressed in normal pancre-
atic ducts and acini (57). MUC1 expression is com-
monly observed in invasive pancreatic
adenocarcinomas at both the transcript and protein
levels (55–58), approaching 100% of cases in some
series. In our study, MUC1 expression was present
in 11 of 11 (100%) normal intra- and interlobular
pancreatic ducts, 6 of 14 (43%) PanIN 2, and 6 of 7
(85%) PanIN 3 lesions but in only 1 of 16 (6%)
PanIN 1A and 1 of 18 (5%) PanIN 1B lesions. Thus,
in the multistep progression of pancreatic adeno-
carcinomas, MUC1 expression within normal intra-
and interlobular ducts appears to be decreased in
the low-grade PanINs (PanIN 1A and 1B). MUC1
appears to be subsequently re-expressed in the ad-
vanced PanIN lesions, and this expression persists
into invasive adenocarcinoma. The expression of
MUC1 is detected primarily in the apical mem-
branes of normal ducts and PanINs, but only in the
latter is occasional cytoplasmic expression also
present. The transfection of MUC1-expressing con-
struct into MUC1-negative tumor cell lines results
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in increased tumorigenicity and invasiveness in
vivo (59), whereas functional studies have demon-
strated MUC1 being upstream of the oncogenic
Grb2-SOS-ras signaling pathway (60, 61). Thus, ir-
respective of the mechanism, re-expression of
MUC1 in advanced PanIN lesions would appear to
favor cell growth and invasion.

Unlike MUC1, the expression of the apomucin
MUC2 is uncommon in both normal pancreas and
in invasive ductal adenocarcinomas (57, 58). In
contrast, MUC2 expression is commonly seen in
intraductal papillary mucinous neoplasms (IPMNs)
and their associated invasive colloid carcinomas
(56). Adsay et al. (55) have proposed a dichotomy in
the pathways to tumorigenesis within the pancreas,
with MUC1-expressing invasive adenocarcinomas
arising from PanINs and MUC2-expressing invasive
adenocarcinomas arising in the backdrop of
IPMNs. Consistent with these previous observa-
tions, none of the 66 normal or PanIN lesions in our
study expressed MUC2. Thus, MUC2 expression is
unlikely to play a significant role in the progression
model of ductal adenocarcinoma of the pancreas.
The basis for absence of MUC2 expression remains
largely unknown, although it may be attributed to
epigenetic inactivation by methylation of the MUC2
gene promoter (62).

The apomucin MUC5 is a gastric foveolar mucin
that is normally expressed in the gastric epithelium
but is down-regulated in the course of intestinal
metaplasia (54). In our study, MUC5 was focally or
diffusely expressed in 0 of 11 normal pancreatic
ducts, in 12 of 16 (75%) PanIN 1A, in 13 of 18 (72%)
PanIN 1B, in 13 of 14 (93%) PanIN 2, and in 7 of 7
(100%) PanIN 3 lesions. These findings are compa-
rable to the findings of Kim et al. (63), who detected
MUC5 expression in 71–90% of PanIN lesions in
regular histologic sections. MUC5 is similar to
MUC1 in that it is also expressed in the majority of
invasive ductal adenocarcinomas (56, 57, 63). In
contrast to MUC1, however, MUC5 is not expressed
in normal ducts, but its expression is up-regulated
even in the earliest PanIN lesions and persists
thereafter in the majority of lesions of all histologic
grades.

Novel Tumor Markers (PSCA, Mesothelin,
Fascin, and 14-3-3�)

Our recent global gene expression analyses of
pancreatic adenocarcinomas have identified a large
number of transcripts that are differentially up-
regulated in primary pancreatic cancers and in
pancreatic cancer cell lines (13–15, 64). We have
subsequently validated a subset of these genes at
the protein level in routine tissue sections of inva-
sive pancreatic adenocarcinomas. For example,
prostate stem cell antigen (PSCA) is a glycosylphos-

phatidyl inositol (GPI)–anchored protein with a
limited tissue distribution, being most strongly ex-
pressed in the basal cells of the prostate (65). Argani
et al. (66) have demonstrated up-regulation of PSCA
transcripts in pancreatic adenocarcinomas by
SAGE analysis (http://www.ncbi.nlm.nih.gov/
SAGE) and have demonstrated overexpression of
PSCA gene product in 60% of infiltrating adenocar-
cinomas by immunohistochemistry. In the current
study, focal or diffuse PSCA expression was present
in 0 of 11 normal ducts, in 7 of 16 (43%) PanIN 1A,
in 5 of 18 (28%) PanIN 1B, in 6 of 14 (43%) PanIN 2,
and in 4 of 7 (57%) PanIN 3 lesions. The pattern of
immunolabeling was similar to that seen in invasive
adenocarcinomas, being primarily cytoplasmic
with focal luminal accentuation. Thus, up-
regulation of PSCA can be classified as an “early”
event in the progression model of pancreas cancer.

Along the same lines, mesothelin is a membrane-
bound GPI-anchored protein that plays a role in
cell adhesion and is normally most abundantly
overexpressed by mesothelium (67). Mesothelin is
also overexpressed in ovarian carcinomas and in
squamous carcinomas of the lung, cervix, and
esophagus (68, 69). Argani et al. (70) reported up-
regulation of mesothelin transcripts in SAGE librar-
ies of pancreatic adenocarcinomas and confirmed
the overexpression of mesothelin protein in 100%
(83% diffuse, 17% focal) of primary pancreatic ad-
enocarcinomas (70). In the current study, focal or
diffuse mesothelin labeling was seen in 0 of 11
normal ducts, 1 of 16 (6%) PanIN 1A, 0 of 18 PanIN
1B, 2 of 14 (14%) PanIN 2, and 1 of 7 (14%) PanIN 3
lesions. The labeling pattern of mesothelin resem-
bles that of PSCA, being primarily cytoplasmic with
luminal accentuation; in addition, luminal contents
are frequently positive. In contrast to PSCA, how-
ever, mesothelin expression is uncommon in Pan-
INs but is strongly up-regulated in the process of, or
after tissue invasion by neoplastic ductal cells.
Thus, mesothelin up-regulation would be classified
as a “late” event in the progression model of pan-
creas cancer.

The human homolog of the sea urchin fascin is
an actin-binding cytoskeletal protein that has been
implicated in cell motility (71, 72). Iacobuzio-
Donahue et al. (13) have reported the up-regulation
of fascin transcripts in pancreatic adenocarcinoma
tissues and cell lines using oligonucleotide microar-
rays, whereas Maitra et al. (16) have confirmed the
overexpression of fascin protein in 95% of primary
pancreatic adenocarcinomas. In the current study,
focal or diffuse cytoplasmic fascin expression was
seen in 0 of 11 normal ducts, 4 of 16 (25%) PanIN
1A, 5 of 18 (28%) PanIN 1B, 8 of 14 (57%) PanIN 2,
and 4 of 7 (57%) PanIN 3 lesions. Therefore, fascin
up-regulation would be considered an “intermedi-
ate” event in pancreatic adenocarcinoma progres-
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sion, not uncommon in early PanIN lesions, but
substantially up-regulated in advanced PanINs and
nearly universal in invasive cancers.

14-3-3� is a p53-regulated gene that belongs to
the family of 14-3-3 proteins, which plays a role in
a variety of cellular processes like signal transduc-
tion, cell cycle regulation, apoptosis, stress re-
sponse, and cytoskeletal organization (73, 74). Sev-
eral lines of evidence reiterate the role of 14-3-3� as
a classic tumor suppressor gene in that loss of ex-
pression of 14-3-3� mRNA or protein has been re-
ported in breast carcinomas (75), squamous cell
carcinomas of the head and neck (76), primary
bladder cancers (77), and hepatocellular carcino-
mas (78). Iacobuzio-Donahue et al. (15) demon-
strated paradoxical up-regulation of 14-3-3� tran-
scripts in pancreatic adenocarcinomas by cDNA
microarray analysis and confirmed the overexpres-
sion of the 14-3-3� protein in 90% of invasive pan-
creatic adenocarcinomas. Additionally, they were
able to demonstrate cancer-specific hypomethyla-
tion of the 14-3-3� promoter compared with nor-
mal pancreatic ductal epithelium, which lacks ex-
pression of 14-3-3�. We have subsequently
demonstrated the overexpression of 14-3-3� in
other gastrointestinal adenocarcinomas by immu-
nohistochemistry (unpublished data). In the cur-
rent study, 0 of 11 normal pancreatic ducts, 2 of 16
(13%) PanIN 1A, 2 of 18 (11%) PanIN 1B, 3 of 14

(21%) PanIN 2, and 6 of 7 (85%) PanIN 3 demon-
strated focal or diffuse expression of 14-3-3�. Thus,
up-regulation of 14-3-3� is another example of a
“late” molecular event in the multistep progression
of pancreas cancers, possibly occurring in concert
with p53 abrogation and/or significant chromo-
somal instability within the ductal epithelium.

In summary, we have examined 14 cellular pro-
teins encompassing a variety of cellular pathways
and functions in the precursor lesions of pancreatic
ductal adenocarcinomas using a TMA-based ap-
proach. Although the numbers of PanIN lesions in
individual histologic categories, particularly PanIN
3, are small, we have demonstrated that frequency
of abnormalities for a given marker using TMAs is
quite comparable, if not remarkably similar, to the
frequency detected using routine histologic sec-
tions. This study underscores the overall reliability
of a TMA-based approach demonstrated in cancers
and extends this concept to the study of precancer-
ous lesions as well. Needless to say, the logistical
benefits and cost-effectiveness of studying �50
ductal lesions on a single slide are enormous. In
addition, the use of a TMA approach allows one to
compare multiple parameters in the same precan-
cerous lesions, a prerequisite for dissecting the mo-
lecular pathways to carcinogenesis. Figure 3 dem-
onstrates our current understanding of molecular
abnormalities in the multistep progression model

FIGURE 3. A “PanINgram” illustrating our current understanding of the molecular changes in the multistep progression model of pancreas
adenocarcinomas.
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of pancreas cancer (“PanINgram”) and underscores
the tremendous advances made in our understand-
ing of these precursor lesions since the earliest ver-
sion of this illustration appeared, merely 3 years
ago (79). The separation of early molecular events
in PanIN lesions (up-regulation of PSCA) from late
changes (up-regulation of mesothelin and 14-3-3�)
demonstrated in this study will hopefully lead to
rational early-detection strategies in patients at risk
for developing pancreatic cancer (for example, pa-
tients belonging to high-risk pancreatic cancer fam-
ilies or patients with one of the known pancreas
cancer syndromes). Thus, one could envision that
in such patients undergoing screening for pancreas
cancer, the presence of elevated mesothelin levels
in the pancreatic juice is likely to suggest a more
advanced ductal lesion, if not occult carcinoma, as
compared with the presence of elevated PSCA
alone. Invasive pancreatic adenocarcinoma, once
established, is almost always fatal, and therefore,
the systematic identification and targeting of mo-
lecular abnormalities in the precursor lesions of
invasive cancer remains one of our strongest ave-
nues for combating this lethal disease.
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