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p53 mutation has been shown to be associated with
chromosomal instability (CI) in many human dys-
plastic and neoplastic lesions. However, the precise
role of p53 in the pathogenesis of prostate carci-
noma (Pca) is unknown. Topographic analysis of
p53 alteration using immunohistochemistry (IHC)
was performed on 35 archived prostatectomy spec-
imens containing Pca foci; high-grade prostrate in-
traepithelial neoplasia (HPIN) foci intermingled
with cancer (HPINI) and situated away (HPINA).
Specimens from 2 patients were topographically
genotyped using laser capturemicrodissection, PCR
amplification, and direct sequencing of p53 exons
5–9. CI was evaluated in the same tissue foci by
interphase in situ hybridization (IFISH) using cen-
tromere probes for chromosomes 7, 8, and Y. p53
immunoreactivity was found in 20%, 17%, 0, and 0
in Pca, HPINI, HPINA, and benign epithelium, re-
spectively. p53 molecular analysis in the specimens
examined confirmed the IHC findings. IFISH re-
vealed numerical chromosomal alterations in keep-
ing with CI in 71% and 25% of p53� and p53� Pca,
respectively (P � .1), 67% and 0 of p53� and p53�
HPIN, respectively (P < .02), and in 27% and 0 of
HPINI and HPINA, respectively. We concluded that

p53 mutation is an early change in at least a subset
of Pca. HPINI foci tend to have higher overall p53
immunoreactivity and CI than HPINA. The pres-
ence of p53 mutation in HPIN was associated with
the presence of CI as determined by IFISH. Our
study also provided additional evidence in support
of the concept that HPIN might be the earliest pre-
cursor of cancer. Furthermore, our studies identify
genomic similarities in HPINI and Pca, implying
that carcinoma may arise from progression of cer-
tain HPIN foci that most likely harbor p53mutation
and/or more CI.
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The reported frequency of mutation of the p53 tu-
mor suppressor gene in Pca has varied widely, rang-
ing from 3–72% in carcinomas of the prostate and
0–68% in HPIN (1–8). In the literature, there is
controversy about the question of whether p53 al-
teration is an early or late genetic change (1, 6, 7,
9–15). Striking heterogeneity of p53 mutation in
prostate cancer has been reported (16), and differ-
ent mutated alleles were found among multiple
tumor foci in single glands (16, 17). p53 has been
found to be associated with genomic instability
leading to chromosomal rearrangement, which in
turn has been demonstrated to be a feature of many
neoplastic and preneoplastic (dysplastic) human
epithelia (18–30). The transition from preinvasive
disease to invasive carcinoma was shown to be
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associated with changes in the number of chromo-
some copy and that coincide with the loss of TP53
function. Whether there is a role of chromosomal
instability (CI) in the progression of HPIN foci to
invasive cancer and whether is that influenced by
heterogeneity in the p53 expression between differ-
ent HPIN foci is still unknown.

The objectives of this project are as follows.
First, to study the p53 mutation pattern in HPIN
foci that are intermingled with cancer and to
compare them with different isolated HPIN foci
situated in the same gland but away from any
cancer foci. Second, to study the relation between
p53 mutation and CI in precancerous and malig-
nant prostate epithelium.

MATERIAL AND METHODS

Patients
Tissue samples were obtained from prostate car-

cinoma resected at Toronto General Hospital and
Sunnybrook and Women’s College Health Sciences
Center, Toronto, Ontario, Canada. A total of 35
cases were selected based on the presence of HPIN
foci intermingled with cancer and HPIN foci sepa-
rated from cancer, with no other cancer foci in the
serial blocks superior and inferior to that particular
foci.

Immunohistochemistry Staining
Immunohistochemistry (IHC) was performed on

archival formalin-fixed, paraffin-embedded sec-
tions (5 �m) from prostatectomy specimens con-
taining both prostate carcinoma and HPIN foci. The
appropriate control was used. Monoclonal anti-
body to p53 (DO7 clone; Novocastra Laboratories
Ltd., Newcastle, United Kingdom) was applied us-
ing avidin-biotin peroxidase complex (Elite kit; Vec-
tor Laboratories, Burlingame, CA). The positive
control for p53 immunoreactivity consisted of
formalin-fixed sections from an adenocarcinoma of
breast and bladder transitional cell carcinoma.
Negative internal controls were stromal cells. Im-
munoreactivity (IR) was categorized semiquantita-
tively from 0 to 4� (0 � no IR, 1� � 1–10%, 2� �
11–40%, 3� � 41–70%, 4� � 71–100%). Staining
was defined as positive whenever any specific nu-
clear brown staining was detected. In the event of
disagreement in quantification, the sample was re-
reviewed by both observers, and a consensus score
was achieved.

Interphase FISH Analysis
Interphase FISH has been performed on 5-�m

unstained tissue sections of the same blocks used
for the p53 study, using adjacent hematoxylin and

eosin (H&E) –stained sections as guidance. Directly
labeled VYSIS CEP probes for chromosomes 7, 8, X,
and Y were used. Paraffin pretreatment and FISH
procedure were performed according to manufac-
turer instructions (Vysis, Inc., Downers Grove, IL).
Dual-probe hybridization was performed. For each
probe, 100 nuclei were counted by each observer.
Chromosome X was used as an internal hybridiza-
tion control for chromosome Y to determine
whether any apparent loss of Y was caused by in-
adequate hybridization. The chromosome X signals
were not enumerated.

Criteria for Scoring and Evaluation of Numerical
Chromosomal Anomalies

In preliminary experiments, the hybridization ef-
ficiency of every probe has been tested on prostate
tissues. Slides were evaluated according to the ac-
cepted criteria (31). Briefly, only sections with hy-
bridization in at least 80% of cells were evaluated.
For each probe, two independent investigators
counted the number of FISH signals in 200 non-
overlapped intact (spherical) interphase nuclei
from foci of HPIN. The number of signals per nu-
cleus were scored as in terms of signal per nucleus:
0, 1, 2, 3, 4, and more than 4. Nuclei from stromal
element were not enumerated. Normal and hyper-
plastic glandular epithelium present in the biopsies
were counted as internal control. Because of trun-
cation of the nuclei, artifact loss of signals was
expected; however, we applied very conservative
criteria to detect any significant true numeric
changes. Our criteria to evaluate numeric chromo-
somal abnormality were as follows:

1) Chromosomal gains had been diagnosed when
more than 8% of the nuclei exhibited more than
two signals (or one for chromosome Y).

2) Chromosomal losses had been diagnosed
when more than 50% of the nuclei exhibited a re-
duction of signal number.

3) Tetraploidy had been suspected when the per-
centage of nuclei with three and four signals (or two
for Y chromosome) was similar for both chromo-
somes 7 and 8. These cutoff values were adopted
from the available literature (32–36). In our study,
as in others, no BPH specimens or normal prostate
epithelium contained values that exceeded these
criteria.

p53 Sequencing: Laser Capture Microdissection
and Genomic DNA Extraction

Laser capture microdissection (LCM) was per-
formed with a Pixcell II Laser Capture Microscope
(Arcturus Engineering, Mountain View, CA) in the
Ontario Cancer Institute. Tissue (4–5-�m thick-
ness) were used, and foci of choice were dissected
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as described elsewhere (37, 38). DNA was extracted
as previously described (39). DNA was analyzed for
p53 mutation by the p53 sequencing method. DNA
sequences of p53 (Exons 5–9) were amplified by
PCR. Sequencing analysis was done using the p53
Mutation Detection GeneKit (Visible Genetics Inc.,
Toronto, Ontario, Canada). Each exon has been
sequenced separately using 3' primer, and for those
with any abnormality, the other, 5' direction was
done to confirm the findings.

Statistical Analysis
The McNemar test was used to examine the dif-

ferences between HPINA and HPINI in the same
gland regarding p53 positivity and numeric chro-
mosomal changes. The z test was used to analyze
the difference between p53� and p53� HPIN re-
garding CI. The same test was used to examine the
difference between p53� and p53� Pca regarding
CI.

RESULTS

We identified 35 prostatectomy specimens that
have Pca with intermingled HPIN foci and at the
same time have HPIN foci that are completely sep-
arated from the cancer foci and admixed with be-
nign epithelium (Fig. 1). We performed p53 analy-
ses using IHC (DO7) on representative sections of
these specimens (total: 80 HPIN foci and 44 Pca
foci). Table 1 summarizes the overall p53 and chro-
mosomal anomalies in Pca, HPINI, HPINA, and
benign prostate epithelium. Seven cases (20%)
stained positively for p53 in Pca foci (Fig. 2A–C).
Immunoreactivity in those positive cases was cate-
gorized semiquantitatively as follows: 3 cases as 1�,
2 cases as 2�, and 2 cases as 3�. There was a
remarkable similarity between HPINI and Pca in
the p53 immunoreactivity because six of those
seven cases (86%) also stained positively in the
HPINI (Fig. 2A–D). None of those 7 cases showed
immunoreactivity in the HPINA in the same glands
(Fig. 2E). None of the p53-negative cancers showed
positively in the HPIN foci. The normal, atrophic,
and hyperplastic tissue situated in the same sec-
tions showed negative staining in all the cases (Fig.
2F). The Gleason grades for p53-positive cases were
7 (5 cases) and 8 (1 case) and 9 (1 case). The Glea-
son grades for p53-negative cases were 6 (11 cases),
7 (15 cases), 8 (1 case), and 9 (1 case). The volume
of the tumor as evaluated by the percentage of the
tumor in the gland for p53-positive cases was less
than 10% in 4 cases and more than 10% in 3 cases.
For p53-positive cases, the percentage of tumor was
less than 10% in 17 cases and more than 10% in 11
cases. When this results were compared with
pathological findings, there was no statistically sig-

nificant difference between the p53-positive and
p53-negative cases regarding Gleason grade, vol-
ume of the tumor, perineural invasion, seminal ves-
icle involvement, and lymph node metastasis. In
five of seven p53� cases, pathological examination
showed extraprostatic extension, and that finding
was seen in 10 patients out of 28 of the p53-negative
cases (P � .1). Focal cytoplasmic staining was seen
in four cases (Patients 3, 5, 11 and 20) in the Pca and
HPIN foci and was counted as negative. Focal (scat-
tered cells) p53 basal staining was seen in about
30% of the cases in the hyperplastic foci but was
found very rarely in HPIN foci. p53 sequencing
analysis was performed for Exons 5–9 using a laser-
captured microdissected specimens from Pca,
HPIN foci, and benign epithelium (Fig. 3) from 2
selected patients (one positive and one negative for
p53 by IHC). In the patient with p53 immunoreac-
tivity (Patient 34), sequencing analysis revealed that
the tumor foci harbored point mutation TGT at
Codon 273 instead of wild-type TGC in the highly
conserved transcript region at Exon 8 substituting
the encoded amino acid from arginine to cystine
(Figure 4). The mutation has been confirmed using
primers from both 3' and 5' direction. The other
patient (Patient 9) with a negative p53 by IHC
showed CI in cancer foci, so p53 sequencing anal-
ysis has been performed on normal foci, HPIN, and
cancer from that patient to see whether cancer foci
harbor termination mutation in p53 that might be
missed by IHC. The analysis, however, revealed that
all those foci harbor normal Exon 5–9 sequences,
indicative of wild-type p53. The analysis of these
two cases confirmed the IHC findings. IFISH anal-
ysis for chromosomes 7, 8, and Y was performed to
assess CI in sections from the same blocks used for
IHC analysis. Numeric chromosomal aberrations
were found in 27% of HPINI and in 47% of Pca (Figs.
5–6). There were no statistically significant differ-
ences in the frequency of chromosomal anomalies
between HPINI and Pca, and the overall frequen-
cies of numeric chromosomal anomalies between
them were similar. Numeric chromosomal aberra-
tions were found in 5/7 and 4/6 of the p53� Pca
and p53� HPIN, respectively. On the other hand,
numeric chromosomal abnormality has been seen
only in 2/8 of p53� Pca and in none of the p53�
HPIN, including both HPIN that intermingled with
cancer and those situated away. However, this find-
ing was not found to be statistically significant.
Gain of chromosome 8 was the most frequent
change in both HPIN and Pca, followed by gain of
chromosome 7. Chromosome Y aneusomy was
seen in 2 cases of Pca (in Patient 6 as Y chromo-
some gain and in Patient 26 as Y chromosome loss),
and in both cases the intermingled HPIN foci
showed similar changes. No CI has been detected in
the normal, hyperplastic, or atrophic epithelium. It
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was interesting to notice occasionally that early
stromal invasion, the earliest morphologic indica-
tion of carcinomas, occurs at sites of acinar out-
pouching and basal cell disruption in acini with
HPIN.

DISCUSSION

In agreement with results of other studies (6, 7,
40–44) our results showed that p53 mutation oc-

curs relatively infrequently in Pca (20%) compared
with the case of other human cancers like colon,
esophagus, and lung cancer. However, the presence
of HPIN foci with positive staining for p53 indicated
that in a subset of Pca, the mutation could occur at
an earlier stage of cancer pathogenesis. Our study
showed heterogeneity of p53 positivity in the HPIN
foci in the same gland, where foci of HPIN inter-
mingled with p53-positive cancer foci tend to have

FIGURE 1. A–D, H&E sections show foci of HPIN (blue arrow) intermingled with invasive cancer (green arrow). E, H&E section of HPIN
surrounded by benign epithelium. F, a higher power; HPIN foci (blue arrow) and benign epithelium in the lower part of the image.
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TABLE 1. Summary of the p53 and Interphase FISH Results on Prostatectomy Specimens

Group Pca (%) HPINI (%) HPINA Normal

Total 35 35 35 35
P53� (n:35) 7 (20) 6 (17.1) 0 0
CIN� (n:15) 7 (47) 4 (27) 0 0
P53�/CIN� 5 4 0 0
P53�/CIN� 2 2 0 0
P53�/CIN� 2 0 0 0
P53�/CIN� 6 9 15 15

FIGURE 2. p53 IHC (DO7). A, positive nuclear staining in invasive cancer (green arrow) and in the adjacent HPIN (yellow arrow). B, positivity in
cancer gland. C, another case with the same features. Blue arrow, vessels used as a negative control. D, high power. E, HPIN away from cancer with
negative staining in the same Gland A. F, negative staining in a hyperplastic epithelium.
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higher incidence of p53 alteration than do isolated
HPIN situated away from cancer and admixed with
benign epithelium. Although 86% of HPINI in p53�
Pca showed p53 positivity, none of the HPINA were
positive (P � .05). That may explain some of the
controversy in the literature regarding the inci-
dence of p53 mutation in HPIN. Our study did not
show positive nuclear staining in the adjacent nor-
mal, hyperplastic, or atrophic foci, including those
tissues adjacent to or intermingled with cancer foci
in any of the cases. In addition, CI was not observed
in normal, hyperplastic, or atrophic epithelium.
Taken together, these findings are not in keeping
with the recently proposed idea that atrophy may
give rise to carcinoma (45). More than 98% of all
p53 mutations are located in Exons 5–9 (46, 47). We
have performed p53 sequence analysis for Exons
5–9. Sequencing analysis has been performed using
laser-captured microdissected specimens from Pca,
HPIN foci, and benign epithelium. It has been done
on a subset of cases (samples from 2 patients) to
confirm the IHC findings. We have applied a laser
capture microdissection technique that enables us
to dissect very pure Pca and HPIN foci with no
contamination. The discrepancies between IHC
and PCR-SSCP that have been reported by some
researchers in Pca could be caused by contamina-

tion by normal tissue or foci without an apparent
mutation because of the heterogeneity of Pca. Still,
IHC does not detect all alteration that may affect
p53 function, such as loss of heterozygosity at the
p53 locus, nonsense or splice site mutations, or
amplification of the MDM-2 gene, but all of these
are very rare in prostate cancer. Generally, a good
correlation between p53 alteration detected by IHC
and molecular studies has been noted in prostate
cancer (4, 7, 44, 48, 49). Hall et al. (44) found com-
plete agreement between IHC and TP53 SSCP anal-
ysis. Wertz et al. (48) reported 85% overall agree-
ment between the two methods, whereas the
concordance was 76.7% by Salem et al. (7). In one of
our cases, a point mutation has been seen at Codon
273, changing the amino acid from arginine to cys-
tine. p53 mutation at Codon 273 has been de-
scribed in Pca (10, 50–52). G:C-to-A:T transitions
were the most common point mutations (64%) in
prostate cancer (10). Six (55%) of 11 G:C-to-A:T
transitions occurred at CpG dinucleotides in five
hot-spot codons (175, 245, 248, 273, and 282), and it
was suggested that specific p53 mutations partici-
pate in the progression of human prostate cancer
and may be predictive of metastasis (10).

This study, in addition to some other recent stud-
ies (both in vitro and in vivo), has demonstrated

FIGURE 3. p53 sequencing analysis. Top picture, a normal sequence of Exon 8. Middle picture, a wild-type p53 (Patient 9). Bottom picture,
mutated p53 with a change in Codon 273, changing the wild-type TGC to TGT and changing the amino acid from arginine to cystine. The
corresponding IHC for p53 is on the left side.
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correlation between loss or mutation of p53 and the
presence of CI (53–63). More recently, centrosome
hyperamplification was found to be the major
mechanism responsible for CI in vitro and in vivo
(58, 59, 64–66). Centrosome is the major
microtubule-organizing center and is required for
spindle bipolarity, spindle microtubule assembly,
and balanced segregation of the chromosomes (67).

A very strong correlation has been found between
p53 loss or mutation and centrosome hyperampli-
fication (27, 55, 59, 67). Breast carcinoma and squa-
mous cell carcinoma of the head and neck with
either p53 deletion or mutation show centrosome
hyperamplification (58, 64, 65).

IFISH analysis for chromosomes 7, 8, and Y was
performed to assess CI. We used these chromo-

FIGURE 4. H&E sections show an example of LCM. Dissection of benign epithelium (left side) and of HPIN (right side). Top pictures represent the
tissue before dissection, middle pictures are after dissection, and bottom pictures are the cap tissues, which were used for p53, automated
sequencing analysis.
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somes to assess CI because they are the most fre-
quently affected chromosomes in prostate cancer
pathogenesis. Although CI represents generalized
changes in the cellular chromosomes, it is selective
for certain chromosomes in carcinogenesis of dif-
ferent organs. Our finding revealed numeric chro-
mosomal aberrations in 5/7 and 2/8 of p53-positive
and p53-negative Pca, respectively (P � .1). How-
ever, the presence of any numeric chromosomal
abnormality has been seen in 4/6 and 0/9 of p53-
positive and p53-negative HPIN (P � .02). Gener-
ally, none of the p53� intermingled and away HPIN
foci showed any chromosomal abnormality. So
generally, HPINI tend to have more CIN than those
situated away (4/15 versus 0/15), with statistically
significant difference (P � .05). No CI has been
detected in the normal, hyperplastic, or atrophic
epithelium and those areas showed no p53 alter-
ation either. This suggest that those HPINI foci may

represent the source of the adjacent invasive com-
ponent, whereas the other isolated HPINA foci that
admixed with benign epithelium may still be in the
early stages of the carcinogenesis pathway and
probably require more CI to progress to invasive
cancer. This also suggested that p53 mutation may
play a role in the progression of HPIN to invasive
cancer, and this could happen through induction of
CI.

We applied IFISH on sections from the same
blocks that have been used for p53 IHC and that
enabled us to compare the findings of the two as-
says in the same foci of tissue. IFISH has higher
sensitivity than other methods used for this pur-
pose, such as CGH, which detects copy number
changes if they are present in more than 50% of the
cell population (21). IFISH can identify CI in small
subpopulations of interphase cells (68), allowing
the detection of infrequent, possibly random
changes before they lead to clonal expansion (20).
Using IFISH on pretreatment and post anti-
androgen therapy prostate cancer specimens,
Karashima et al. (69) found a remarkable reduction
in the number of cells with extra copies of chromo-
somes 7 and 8.

Our IFISH results showed that gain of chromo-
some 8 is the most frequent finding in both HPIN
and Pca. c-Myc gene is located in the 8q arm, and
gain of chromosome 8 indicated an extra copy of
that important oncogene. The role of c-Myc in the
mechanism of CI has been recently described. Extra
copies of the c-Myc gene were identified in 52 and
44% of the high-grade PIN and carcinoma foci,
respectively (70), and by Mark et al. (71) in 31% of
Pca. In some cancers displaying CI, the loss of the
checkpoint was associated with the mutational in-
activation of a human homologue of the yeast
BUB1 gene. BUB1 controls mitotic checkpoints and
chromosome segregation in yeast (72). Disruption
of the mitotic spindle checkpoint is one of the un-
derlying mechanisms leading to aneuploidy and
alterations of hsMAD2 and hBUB1. This mecha-
nism, assumed to take part in the spindle check-
point in human cells, has been found to be associ-
ated with CI in some tumor cell lines (8). However,
there is no study on these genes in prostate tumors.
Other possible mechanisms may be involved in the
causation of CI, such as shortened telomeres, hy-
pomethylation, activation of certain genes or inac-
tivation of tumor suppressor genes.

CONCLUSION

We demonstrated that p53 mutation is an early
change in at least a subset of Pca. HPINI foci tend to
have higher overall p53 immunoreactivity and CI
than HPINA. The presence of p53 mutation in HPIN

FIGURE 5. Interphase FISH on a focus of invasive prostate
carcinoma using dual-centromere probes. Some cells (white
arrowheads) show more than 2 green and more than 2 red signals,
consistent with a gain of chromosomes 7 and 8. The yellow arrowhead
shows cells with 2 green and 1 red signals.

FIGURE 6. Interphase FISH on a focus of invasive prostate
carcinoma using dual probes. Some cells (white arrowheads) show 3
green signals and 4 red signals, consist with a gain of chromosomes 7
and 8. Other cells (yellow arrowhead) show only one red and one
green signal.
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was associated with the presence of CI as deter-
mined by IFISH. Also, our study provided addi-
tional evidence in support of the concept that HPIN
is the earliest precursor of cancer. Furthermore our
studies identify genomic similarities in HPINI and
Pca, implying that carcinoma may arise from pro-
gression of certain HPIN foci that most likely harbor
p53 mutation and/or elevated levels of CI.
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