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Malignant rhabdoid tumor (MRT) is a highly aggres-
sive neoplasm that mostly occurs in childhood,
characterized histologically by rhabdoid cells as
shown by eosinophilic intracytoplasmic inclusions.
Although it is known that rhabdoid cells co-express
cytokeratin (CK) and vimentin, the distribution pat-
terns of these two kinds of intermediate filaments
and structural relationship between them are still
not known.We investigated the subcellular distribu-
tion of CKs 8 and 18 and vimentin in MRT cell lines
(Tm87-16, STM91-01, TTC549, and TC289) using
confocal laser scanning microscopy and double im-
munofluorescence, in addition to ultrastructural
examination. Vimentin was diffusely expressed in
the cytoplasm of MRT cells, focally forming a fila-
mentous network. In contrast, CKs 8 and 18 were
partially expressed in the cytoplasm of MRT cells,
forming globules or a few vague agglomerates.
Three-dimensional images in TC289 cells revealed
distinct distribution patterns of cytokeratin and vi-
mentin, showing agglomerates of cytokeratins
within the vimentin filament network.We conclude
that these globules and agglomerates of CKs 8 and
18 correspond with the characteristic ultrastruc-

tural finding, showing cytoplasmic bundles of inter-
mediate filaments concentrated in whorled arrays.
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Malignant rhabdoid tumor (MRT) was originally
described in 1978 (1) as a renal malignant neo-
plasm of infancy and early childhood. This tumor
is extremely rare and highly aggressive. Histolog-
ically, MRT is composed of monomorphous
sheets of round or polygonal cells with intracyto-
plasmic eosinophilic inclusions, referred to as rh-
abdoid cells (1, 2). Ultrastructural studies have
revealed that the inclusions consist of compact
bundles or whorls of intermediate filaments 6 to
10 nm in thickness (2, 3). Subsequently, extrare-
nal MRTs with morphologic features substantially
similar to their renal counterparts have been re-
ported, particularly in a variety of soft tissues
(3–5) and in the central nervous system (6–8).
Several immunohistochemical analyses have
been conducted to support the characteristics of
the MRT, most of which show immunoreactivity
for both cytokeratin (CK) and vimentin interme-
diate filaments (8–11). However, distribution pat-
terns of the two kinds of intermediate filaments
and structural relationship between them are still
not known.
We conducted this study to clarify the subcellular

distribution of CK and vimentin in MRT cells using
electron microscopy, confocal laser scanning mi-
croscopy (CLSM), and double immunofluores-
cence. Three-dimensional (3-D) imaging was useful
for revealing the structural relationships between
CKs 8 and 18 and vimentin in MRT cells.
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MATERIALS AND METHODS

Cell Culture
Three MRT cell lines (Tm87-16, STM91-01, and

TTC549) were donated from Shiga University of
Medical Science (Shiga, Japan). Tm87-16 was estab-
lished from malignant pleural effusion in a 21-
month-old boy with a retroperitoneal mass, which
was in fact extrarenal MRT (12). STM91-01 was
established from pulmonary metastasis in an
8-month-old boy with a left renal MRT (13). TTC549
was established from MRT of the liver in a
6-month-old girl (14). Clinical data on the patients
whose tumors were used to establish these cell lines
are summarized in Table 1. Cytogenetic findings of
original tumors are also shown in Table 1. The
molecular characteristics of Tm87-16, STM91-01,
and TTC549 have been described in detail else-
where (15). We recently established the cell line
TC289 derived from the malignant rhabdoid tumor
of kidney of a 1-year-old boy at the primary site
(16). These cell lines were cultured and maintained
in RPMI-1640 supplemented with 10% fetal bovine
serum in a humidified atmosphere of 5% CO2 and
95% air at 37° C.

Electron Microscopic Study
The cells were fixed in 3% glutaraldehyde solu-

tion (buffered pH 7.4) and were postfixed in 1%
phosphate buffered osmium tetroxidate. After hy-
dration, the tissue blocks were embedded in Epon
812 resin (TAAB Laboratories, Berks, UK) and cut
on an ultramicrotome (Ultracut E; Reichert-Jung,
Vienna, Austria). Ultrathin sections were stained
with uranyl acetate and lead citrate and examined
under a JEM 100 C electron microscope (Jeol, To-
kyo, Japan).

Fluorescent Labeling of Antibodies
FluoReporter Protein Labeling Kits (Molecular

Probes, Eugene, OR) were used for labeling mono-
clonal antibodies (MoAbs) fluorescently. To avoid
photobleaching caused by long exposure times dur-
ing the CSLM analysis, we performed this study
with rhodamine Red-X (absorption and emission
maxima at 570 and 590 nm, respectively) and a new
fluorescent dye, Oregon Green 488 (absorption and
emission maxima at 496 and 524 nm, respectively).

Compared with fluorescein isothiocyanate (FITC),
Oregon Green 488 is highly photostable.

Commercial MoAbs against CK 8 (20.4 mg/mL;
35�H11; DAKO, Glostrup, Denmark), CK 18 (19.6
mg/mL; DC 10; DAKO), and vimentin (14.3 mg/mL;
V9; DAKO) were purchased from the manufactur-
ers. Each primary antibody (100 �L volume) was
diluted 1:1 in phosphate buffered saline (PBS), pH
7.4, with the addition of 20 �L of 1 M bicarbonate.
Anti-CK8 MoAb and anti-CK18 MoAb were respec-
tively incubated for 1 hour in the dark at room
temperature with Rhodamine Red-X solution (0.72
mg/mL final). Anti-vimentin antibody was also in-
cubated for 1 hour in the dark at room temperature
with Oregon Green 488 solution (0.17 mg/mL final).
Reaction was stopped by the addition of hydroxyl-
amine. This also allowed the dyes to be removed
from unstable conjugates. After 30 minutes of incu-
bation at room temperature, the fluorescent anti-
bodies were separated from free fluorescent dyes by
centrifugation at 1100 � g for 5 minutes, using spin
columns that contained 30,000-molecular weight–
size exclusion resin in PBS with 2 mM sodium azide.

Flow Cytometry
Single-cell suspensions were prepared by treat-

ment of the cultured cells with 0.25% trypsin and 1
mM EDTA in PBS. After being washed with PBS, 105

cells were incubated with 5 �L of Oregon Green
488-labeled anti-vimentin MoAb and Rhodamine
Red-X–labeled anti-CK 18 MoAb for 30 minutes at
4° C. The cells were washed and fluorescence-
analyzed on an EPICS XL flow cytometer (Coulter,
Hialeah, FL).

Double-Labeling Immunofluorescence and
Confocal Scanning Laser Microscopic
Assessment

Direct immunofluorescence was performed on
all four MRT cell lines. MRT cells were cultured on
a Lab-Tek chamber slide (Nalge Nunc Interna-
tional, Naperville, IL). Cell culture medium was re-
moved, and cells were rinsed three times with PBS
for 5 minutes each, fixed in 4% paraformaldehyde
with 0.01 M PBS for 30 minutes at 4° C, and then
rinsed three times with PBS for 5 minutes each.
Some slides were stained by conventional hematox-
ylin and eosin for cytologic examination. For dou-

TABLE 1. Clinical Features and Detailed Karyotypes of the MRT Cell Lines

Cell Lines Age (Mo) Sex Primary Site Outcome Karyotypes

Tm87-16 21 M Retroperitoneum Died (2 mo) 46,XY,t(11;22)(p15.5;q11.23)
TTC549 6 F Liver Died 46,XX,del(22)(q11.2)
STM91-01 8 M Kidney Died (6 mo) 46,XY,-22,t(2q;10q),t(4q;15q),del(22)(q11.2),�mar
TC289 12 M Kidney Died (9 mo) 47,add(X)(q22),Y,add(1)(p36),add(9)(p11),add(9)(q22),�19
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ble staining, pairs of Oregon Green 488–labeled
antibody and Rhodamine Red-X–labeled antibody
(anti–CK 8 and anti-vimentin; anti–CK 18 and anti-
vimentin) were chosen. Cells were incubated over-
night at 4° C in a mixture of V9 conjugated to
Oregon Green 488, plus either 35�H11 or DC 10
conjugated to Rhodamine Red-X. Slides were rinsed
three times in PBS and mounted in a counterstain-
ing and antifading medium, DAPI II Counterstain
(Vysis Inc., Downers Grove, IL), which is a mixture
containing 4', 6-diamidino-2-phenylindole and
p-phenylenediamine in PBS and glycerol, between
a slide and a coverslip sealed by nail varnish. Triple-
fluorescent slides were viewed with a 40� or 100�
objective lens using conventional fluorescence mi-
croscopy, Axiophot (Zeiss, Thornwood, NY).

To extend our study of the subcellular distribu-
tion of vimentin and cytokeratin intermediate fila-
ments networks in MRT cells, we performed confo-
cal laser scanning microscopy. Confocal optical
sections were collected with a confocal scanning
laser microscope, model LSM-GB200 (Olympus,
Tokyo, Japan), which was equipped with krypton
and argon laser sources, by using a 100� objective
lens (Plan-Apo, 1.4 NA, oil immersion). For the ob-
servation of double-stained preparations, simulta-
neous excitation was evoked at both 488 nm for
Oregon Green 488 and 568 nm for Rhodamine
Red-X with a scan speed of 40 seconds. No detect-
able cross-talk signal of the fluorescent dyes was
recognized, which was carefully verified for all sec-
tions. For whole-mount preparations, final images
were obtained by extended focus; optical sections
at intervals of 0.3 to 0.6 �M were projected on a
single plane, extending for 6.5 to 19 �M in thickness.

Neither Oregon Green 488 nor Rhodamine Red-X
fluorescence presented any problems of bleaching
during sessions, even in the case of long exposures
(�25 min). We processed the confocal Z series of 20
to 40 images for a three-dimensional image includ-
ing stereoscopic imaging using NIH image 1.62 or
Adobe Photoshop 4.0.1 (Adobe Systems, Inc., San
Jose, CA) on a Power Macintosh G3 (Apple Com-
puter Inc., Cupertino, CA).

RESULTS

Ultrastructural Findings
The cytoplasmic feature of the MRT cells was the

presence of bundles of cytoplasmic filaments, con-
centrated in whorled arrays (Fig. 1). The filaments
were approximately 10 nm in diameter and repre-
sented intermediate filaments. These filamentous
inclusions varied in size and arrangement from cell
to cell.

Flow Cytometry Analysis
As revealed in Figure 2, 66.4 to 80.0% of MRT cells

expressed vimentin, and 18.6 to 47.6% of MRT cells
expressed CK 18. Not all vimentin-positive cells ex-
pressed CK 18 (18.6 to 47.6% did), but all CK 18 cells
were vimentin positive. Patterns of co-expression of
CK 18 and vimentin were the same in all MRT cells.

Confocal Laser Scanning Microscopical Findings
Although double immunofluorescence per-

formed with antibodies against CKs 8 and 18 (Rho-
damine Red-X) and vimentin (Oregon Green 488)
using conventional fluorescence microscopy
showed co-expression of the two kinds of interme-
diate filaments in some parts of cytoplasm of MRT
cells, simultaneous confocal imaging with double
immunofluorescence emission was very specific for
detection of each of the fluorochromes used in
overlap figures of Rhodamine Red-X and Oregon
Green 488 spectra.

Tm87-16
Tm87-16 cells were composed of round cells, a

few giant cells, and a few spindle-shaped cells (Fig.
3A). These cells showed distinct subcellular local-
ization of vimentin and cytokeratins. Cytokeratins
were mainly expressed as clusters of globules (Fig.
3B). In some cells, cytokeratins polarized as clumps
along the cell periphery (Fig. 3C). Vimentin was
strongly expressed at the rim of the cytoplasm. The
vimentin pattern was a cordlike or incomplete fila-
mentous pattern (Fig. 3B).

TTC549
TTC549 cells were mainly composed of round

cells with a few giant cells (Fig. 4A). These cells
showed relatively vague subcellular localization of
vimentin and cytokeratins. Cytokeratins were dif-
fusely expressed (Figs. 4B–C) focally in a dot pattern

FIGURE 1. Ultrastructure showing a typical aggregation of whorls of
intermediate filaments compressing a nucleus (Case TC289, 7500�).
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(Fig. 4C). Vimentin was strongly expressed as an
incomplete filamentous network at the cell periph-
ery (Fig. 4B–C).

STM91-01
STM91-01 cells were mostly composed of round

cells (Fig. 5A). These cells showed vague subcellular
localization of vimentin and cytokeratins. Cytoker-
atins were expressed formed agglomerates (Fig. 5B)
and were focally detected at the perinuclear region
(data not shown). Some of the STM91-01 cells
showed loop-like vimentin (Fig. 5C).

TC289
TC289 cells were composed of round cells and

multinucleated giant cells with a few spindle-
shaped cells (Fig. 6A). These cells showed relatively
distinct subcellular localization of vimentin and cy-
tokeratins. In giant cells, cytokeratins were ex-
pressed as a few vague agglomerates, whereas vi-
mentin formed a filament network. In round cells,
the distribution patterns of vimentin and cytokera-
tins were the same as those seen for TTC549 and
STM91-01. In spindle-shaped cells, vimentin was
expressed mainly along the edge of the cytoplasm
(Fig. 6B). Giant cells were used for three-dimen-

sional–imaging analysis. Stereoscopic images re-
vealed a close relation between vimentin and cyto-
keratins. An agglomerate of cytokeratins was
enveloped by the vimentin filament network (Fig.
7).

DISCUSSION

MRT is a unique tumor that is characterized by
rhabdoid appearance of cells with large hyalin-like
globular inclusions at perinuclear regions of cyto-
plasm by hematoxylin-eosin stain. The inclusions
are composed of whorls of intermediate filaments.
Although several immunohistochemical studies
with single-labeling methods have reported co-
expression of cytokeratin and vimentin, no clear
localization of these intermediate filaments in cy-
toplasm has been clarified (9, 10, 13, 17, 18). With
regard to cytokeratin subunits, Shiratsuchi et al.
(18) reported that all six cases of MRT diffusely
expressed CKs 8 and 18. Only one case of MRT also
diffusely expressed CK 19. However, a few cases
showed a focally limited positive immunoreactivity
for CKs 7, 10, 13, and 17. Other cytokeratins includ-
ing CK 3, 4, 5, 6, 10, 14, 16, and 20 were completely

FIGURE 2. Flow cytometry analysis of cytokeratin 18 and vimentin expression in malignant rhabdoid tumor (MRT) cells. Vimentin was expressed
by 66.4 to 80.0% of MRT cells, and cytokeratin 18 (CK 18) was expressed by 18.6 to 47.6% of MRT cells. The relative fluorescence intensity due to CK
18 (Oregon Green 488) and vimentin (Rhodamine Red-X) is plotted on the log scale x- and y-axis, respectively.
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negative in MRT. In this study, double immunoflu-
orescence and confocal laser scanning microscopy
for morphological assessment of localization of CKs
8 and 18 and vimentin in MRT cells revealed clear
localization of the two kinds of intermediate fila-
ments and lack of a structural relationship between

them within the cytoplasm. The flow cytometry
analysis revealed the same patterns of co-
expression of CK 18 and vimentin in all four MRT
cell lines. Two proteins; cytokeratin and vimentin
can be in the cytoplasm of the same cell of MRT,
but in the absence of colocalization and lack of a
structural relationship, there is no proof of a rela-

FIGURE 3. Case Tm87-16. A, hematoxylin and eosin stain (200�). B,
dual imaging from a single section (1024 � 768 pixels) of red (CK 8)
and green (vimentin) fluorescence present in Tm87-16. Cytokeratin is
expressed as clusters of globules. Zoomed vimentin is strongly
expressed, forming an incomplete filamentous network. C, in some
cells, cytokeratin globules form lines, mainly at the cell periphery (1024
� 768 pixels). Scale bars, 10 �M.

FIGURE 4. Case TTC549. A, hematoxylin and eosin stain (200�). B,
dual imaging from a single section (496 � 372 pixels) of cytokeratin
(CK) 8 (red) and vimentin (green) fluorescence. Vimentin is strongly
expressed, forming an incomplete filamentous network. C, dual
imaging from a single section (1024 � 768 pixels) of CK 18 (red) and
vimentin (green) fluorescence. Some cells expressed CK 18 as clusters
of globules. Scale bars, 10 �M.
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tionship to each other. An expression of vimentin in
the overall cytoplasm of MRT cells, forming a com-
plete or incomplete filamentous network, implied
that vimentin played a role in forming cytoskeleton
of MRT cells. Because globules and vague agglom-
erates of CKs 8 and 18 were scattered in the cyto-
plasm of MRT cells and were clearly distinguished

from vimentin filaments showing little significant
colocalization, which was demonstrated by mini-
mal to absent yellow (red/green overlays) signal, we
believe that globules and vague agglomerates of
CKs 8 and 18 are inclusions of MRT.

Cytokeratins are commonly expressed as partic-
ular pairs, which form heteropolymers in cells. For
example, CK 8 is normally co-expressed with CK 18
to form a structural filament bundle. CKs 8 and 18
are mainly expressed in a variety of single-layered
or simple epithelial tissues and are persistently ex-
pressed in a wide variety of carcinomas derived
from the visceral epithelia, including the stomach,
intestinal tract, liver, pancreas, and mammary
gland (19). Also, expression of CKs 8 and 18 is
observed in some malignant mesenchymal tumors
such as leiomyosarcoma and malignant peripheral
nerve sheath tumor (20), in addition to epithelioid
sarcoma and synovial sarcoma (20, 21), which are
classified as miscellaneous tumors. Therefore, the

FIGURE 5. Case STM91-01. A, hematoxylin and eosin stain (200�). B,
dual imaging from a single section (1024 � 726 pixels) of CK 18 (red)
and vimentin (green). CK 18 is expressed in forming agglomerates. C,
dual imaging from a single section (504 � 367 pixels) of CK 8 (red) and
vimentin (green) fluorescence. Some cells show loop-like vimentin.
Scale bars, 10 �M.

FIGURE 6. Case TC289. A, hematoxylin and eosin stain (330�). B,
dual volume project imaging from 20 sections (1024 � 768 pixels) of
cytokeratin 18 (red) and vimentin (green) fluorescence. Giant cells show
a few vague agglomerates of cytokeratins within a vimentin filament
network. Round cells show diffuse cytokeratin and a cordlike or
incomplete vimentin filament network. Spindle-shaped cells show
diffuse cytokeratin and vimentin, mainly expressed at the cell
periphery. Scale bars, 10 �M.
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expression of CKs 8 and 18 does not indicate any
histological origin or tissue differentiation of MRT,
for which histogenesis is still uncertain. Various
cellular origins have been proposed for MRT, in-
cluding neuroectodermal (2, 10, 13, 15), neural (6,
17), epithelial (10, 22), myogenic (10, 23), and
smooth-muscle-cell (16) phenotype. Whatever its
pathogenesis may be, the relatively uniform clini-
copathological profile of MRT supports its accep-
tance as a specific disease entity of malignancy.

Several authors have reported a specific chromo-
somal abnormality comprising the deletion of 22q, de-
tected by established cell lines. Recently, the critical re-
gion of MRT has been mapped to chromosome
segment 22q11.2, close to BCR (14, 24, 25). The
chromatin-remodeling hSNF5/INI1 gene at 22q11.2 has
been reported in some MRT (26). The hSNF5/INI1 inac-
tivation is mainly associated with homozygous deletions
and mitotic recombinations (27). Mori et al. (28) have
also isolated the Rab36 gene at 22q11.2. However, no
morphological assessments of intermediate filaments
about these genes have been reported yet.

It is supported that the globules and agglomer-
ates of CKs 8 and 18 correspond with the charac-
teristic ultrastructural finding, showing cytoplasmic
whorls of intermediate filaments in MRT cells. It is
known that several normal tissue cells and tumors
co-express vimentin and another intermediate fila-
ment (cytokeratin, desmin, or glial filament pro-
tein) in the same or dissimilar pattern. In cultured
vascular smooth muscle cells of human umbilical
cord, CKs 8, 18, and 19 are co-expressed together
with vimentin both in extended fibril forms and
aggregated forms. Some cytokeratin fibrils co-
extended with vimentin fibrils. Some cytokeratin

fibrils are clearly distinguished from adjacent vi-
mentin fibrils (29). In cultured neonatal rat hepa-
tocytes, both cytokeratin and vimentin are ex-
pressed as intermediate filament networks. Both
intermediate filaments are highly interrelated and
mostly colocalized. Vimentin filaments appear in
the spread edges of the hepatocytes (30). Otherwise,
in rhabdomyosarcoma and alveolar soft-part sar-
coma, desmin and vimentin are colocalized within
the same cells (31). In astrocytoma cells (U 333
CG/343 MG), glial filament protein and vimentin
are mostly colocalized in the same fibrillar arrays
(32). Interestingly, CKs 8 and 18 containing cytoker-
atin globules similar to inclusions of MRT are also
seen in the Mallory bodies of alcoholic hepatitis
(33), whereas MRT is dissimilar to this disease in
vimentin expression. Mallory bodies are thought to
be composed of normally assembled CKs 8 and 18,
which are rendered by posttranslational alteration
that occur after filament assembly (34). Such cyto-
keratin globules occur in several degenerative pro-
cesses of many tissues. The globules and agglom-
erates of CKs 8 and 18 in MRT may be a secondary
accumulation of intermediate filaments.
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