Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of elongation factor Tu on the Escherichia coli ribosome

Abstract

The delivery of a specific amino acid to the translating ribosome is fundamental to protein synthesis. The binding of aminoacyl-transfer RNA to the ribosome is catalysed by the elongation factor Tu (EF-Tu). The elongation factor, the aminoacyl-tRNA and GTP form a stable ‘ternary’ complex that binds to the ribosome. We have used electron cryomicroscopy and angular reconstitution1 to visualize directly the kirromycin-stalled ternary complex in the A site of the 70S ribosome of Escherichia coli. Electron cryomicroscopy had previously given detailed ribosomal structures at 25 and 23 Å (refs 2, 3) resolution, and was used to determine the position of tRNAs on the ribosome4,5. In particular, the structures5 of pre-translocational (tRNAs in A and P sites) and post-translocational ribosomes (P and E sites occupied) were both visualized at a resolution of 20 Å. Our three-dimensional reconstruction at 18 Å resolution shows the ternary complex spanning the inter-subunit space with the acceptor domain of the tRNA reaching into the decoding centre. Domain 1 (the G domain) of the EF-Tu is bound both to the L7/L12 stalk and to the 50S body underneath the stalk, whereas domain 2 is oriented towards the S12 region on the 30S subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, b, The 70S E.coli ribosome with the ternary complex locked into the A site by kirromycin.
Figure 2: Stereo views of the ternary complex on the 70S E.coli ribosome seen in directions 40° apart, all with the 30S subunit on the left and the 50S subunit on the right.
Figure 3: The crystallographic structure of the ternary complex (at 2.7 Å resolution) compared to the electron microscopical reconstruction (18 Å resolution).

Similar content being viewed by others

References

  1. van Heel, M. Angular reconstitution: aposteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–124 (1987).

    Article  CAS  Google Scholar 

  2. Frank, J. et al. Amodel of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Stark, H. et al. The 170S E. coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3, 815–821 (1995).

    Article  CAS  Google Scholar 

  4. Agrawal, R. K. et al. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science 271, 1000–1002 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Stark, H. et al. Arrangement of tRNAs in pre- and posttranslational ribosomes revealed by electron cryomicroscopy. Cell 88, 19–28 (1997).

    Article  CAS  Google Scholar 

  6. Wolf, H., Chinali, G. & Parmeggiani, A. Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75, 67–75 (1977).

    Article  CAS  Google Scholar 

  7. Mesters, J. R. et al. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J. 13, 4877–4885 (1994).

    Article  CAS  Google Scholar 

  8. Rodnina, M. V., Fricke, R., Kuhn, L. & Wintermeyer, W. Codon-dependent conformational change of elongation factor Tu preceding GTPO hydrolysis on the ribosome. EMBO J. 14, 2613–2619 (1995).

    Article  CAS  Google Scholar 

  9. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. Anew generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  10. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Tapprich, W. E. & Dahlberg, A. E. Asingle base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J. 9, 2649–2655 (1990).

    Article  CAS  Google Scholar 

  12. Moazed, D., Robertson, J. M. & Noller, H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Girshovich, A. S., Bochkareva, E. S. & Vasiliev, V. D. Localization of elongation factor Tu on the ribosome. FEBS Lett. 197, 192–198 (1986).

    Article  CAS  Google Scholar 

  14. Girshovich, A. S., Kurtskhalia, T. V., Ovchinnikov, Y. A. & Vasiliev, V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 130, 54–59 (1981).

    Article  CAS  Google Scholar 

  15. Traut, R. R. et al. Location and domain structure of Escherichia coli ribosomal protein L7/L12: Site specific cysteine crosslinking and attachment of fluorescent probes. Biochem. Cell Biol. 73, 949–958 (1995).

    Article  CAS  Google Scholar 

  16. Dey, D., Oleinikov, A. V. & Traut, R. R. The hinge region of Escherichia coli ribosomal protein L7/L12 is required for factor binding and GTP hydrolysis. Biochimie 77, 925–930 (1995).

    Article  CAS  Google Scholar 

  17. Langer, J. A. & Lake, J. A. Elongation factor Tu localized on the exterior surface of the small ribosomal subunit. J. Mol. Biol. 187, 617–621 (1986).

    Article  CAS  Google Scholar 

  18. Capel, M. S. et al. Acomplete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238, 1403–1406 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Noller, H. F. et al. Structure and function of ribosomal RNA. Biochem. Cell Biol. 73, 997–1009 (1995).

    Article  CAS  Google Scholar 

  20. Dontsova, O. et al. Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. EMBO J. 11, 3105–3116 (1992).

    Article  CAS  Google Scholar 

  21. Mueller, F. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16S ribosomal RNA. J. Mol. Biol.(in the press).

  22. Powers, T. & Noller, H. F. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. Proc. Natl Acad. Sci. USA 90, 1364–1368 (1993).

    Article  ADS  CAS  Google Scholar 

  23. van Ryk, D. I. & Dahlberg, A. E. Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. Nucleic Acids Res. 23, 3563–3570 (1995).

    Article  CAS  Google Scholar 

  24. Santer, U. V. et al. Amutation at the universally conserved position 529 in Escherichia coli 16S rRNA creates a functional but highly error prone ribosome. RNA 1, 89–94 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

    Article  CAS  Google Scholar 

  27. Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure 4, 1141–1151 (1996).

    Article  CAS  Google Scholar 

  28. Abel, K., Yoder, M., Hilgenfeld, R. & Jurnak, F. An alpha to beta conformational switch in EF-Tu. Structure 4, 1153–1159 (1996).

    Article  CAS  Google Scholar 

  29. Rodnina, M. V., Fricke, R. & Wintermeyer, W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by Elongation Factor Tu. Biochemistry 33, 12267–12275 (1994). Article title?

    Article  CAS  Google Scholar 

  30. Rodnina, M. V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu-GTP-aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).

    Article  CAS  Google Scholar 

  31. Rodnina, M. V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl Acad. Sci. USA 92, 1945–1949 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nyborg for the X-ray coordinates of the ternary complex. We acknowledge support with the IMAGIC system from M. Schatz and R. Schmidt of Image Science GmbH. The work was supported by the Deutsche Forschungsgemeinschaft, grants to W.W., M.vH. and R.B.; H.S. was financed in part by an award to R. Henderson of the MRC Laboratory for Molecular Biology, Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin van Heel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, H., Rodnina, M., Rinke-Appel, J. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997). https://doi.org/10.1038/38770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38770

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing