Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade

Abstract

Photoreceptors detect light through a seven-helix receptor (rhodopsin) and heterotrimeric G protein (transducin) coupled to a cyclic GMP phosphodiesterase1,2. Similar pathways are used to amplify responses to hormones, taste and smell3,4,5. The amplification of phototransduction is reduced by a fall in cytoplasmic Ca2+ (refs 6, 7, 8, 9, 10), but it is not known how the deactivation of rhodopsin and transducin influence this response and hence the extent and duration of phosphodiesterase activity11,12,13,14. Here we investigate this by recording the electrical response to flashes of light in truncated rod photoreceptors10. By removing ATP to block the deactivation of rhodopsin by phosphorylation15, we show that this reaction limits the amplitude of the response and begins within 3.2 s of a flash in a solution containing 1 μM Ca2+, falling to 0.9 s in a zero-Ca2+ solution. In contrast, the activation and amplitude of the response were unaffected when transducin deactivation by GTP hydrolysis was blocked by replacing GTP with its non-hydrolysable analogue GTP-γS11, demonstrating that there is little GTP hydrolysis occurring over the period in which photoexcited rhodopsin is quenched. The rapid deactivation of rhodopsin is therefore a Ca2+-sensitive step controlling the amplitude of the light response, whereas transducin deactivation is slower and controls recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quenching of photoexcited rhodopsin is apparent after a short delay.
Figure 2: Quenching of photoexcited rhodopsin is effectively complete at the peak of the flash response.
Figure 3: Removing Ca2+ accelerates the quenching of photoexcited rhodopsin.

Similar content being viewed by others

References

  1. Stryer, L. The cyclic nucleotide cascade of vision. Annu. Rev. Neurosci. 9, 87–119 (1986).

    Article  CAS  Google Scholar 

  2. Lagnado, L. & Baylor, D. Signal flow in visual transduction. Neuron 8, 995–1002 (1992).

    Article  CAS  Google Scholar 

  3. Lamb, T. D. & Pugh, E. N. G-protein cascades: gain and kinetics. Trends Neurosci. 15, 291–298 (1992).

    Article  CAS  Google Scholar 

  4. Kolesnikov, S. S. & Margolskee, R. F. Acyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376, 85–88 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Gold, G. H. & Pugh, E. N. The nose leads the eye. Nature 385, 677–679 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Matthews, H. R., Murphy, R. L., Fain, G. L. & Lamb, T. D. Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334, 67–69 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Nakatani, K. & Yau, K.-W. Calcium and light adaptation in retinal rods and cones. Nature 334, 69–71 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Kawamura, S. & Murakami, M. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature 349, 420–423 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Kawamura, S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362, 855–857 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Lagnado, L. & Baylor, D. A. Calcium controls light-triggered formation of catalytically active rhodopsin. Nature 367, 273–277 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Vuong, T. M. & Chabre, M. Deactivation kinetics of the transduction cascade of vision. Proc. Natl Acad. Sci. USA 88, 9813–9817 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Pepperberg, D. R. et al. Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).

    Article  CAS  Google Scholar 

  13. Lyubarsky, A., Nikonov, S. & Pugh, E. N. The kinetics of inactivaction of the rod phototransduction cascade with constant Ca12+. J. Gen. Physiol. 107, 19–34 (1996).

    Article  CAS  Google Scholar 

  14. Murnick, J. G. & Lamb, T. D. Kinetics of desensitisation induced by saturating flashes in toad and salamander rods. J. Physiol. (Lond.) 495, 1–13 (1996).

    Article  CAS  Google Scholar 

  15. Wilden, U., Hall, S. W. & Kuhn, H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48 kD protein of rod outer segments. Proc. Natl Acad. Sci. USA 83, 1174–1178 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Detwiler, P. B. & Gray-Keller, M. P. The mechanisms of vertebrate light adaptation: speeded recovery versus slowed activation. Curr. Opin. Neurobiol. 6, 440–444 (1996).

    Article  CAS  Google Scholar 

  17. Chen, J., Makino, C. L., Peachey, N. S., Baylor, D. A. & Simon, M. I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267, 374–377 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Pepperberg, D. R., Jin, J. & Jones, G. J. Modulation of transduction gain in light adaptation of retinal rods. Vis. Neurosci. 11, 53–62 (1994).

    Article  CAS  Google Scholar 

  19. Corson, D. W., Cornwall, M. C. & Pepperberg, D. R. Evidence for the prolonged photoactivated lifetime of an analogue visual pigment containing 11-cis 9-desmethylretinal. Vis. Neurosci. 11, 91–98 (1994).

    Article  CAS  Google Scholar 

  20. Nikonov, S. S., Lyubarsky, A. L. & Pugh, E. N. Hydroylamine decreases rod sensitivity in situ without changing the dominant time constant of recovery. Invest. Ophthalmol. Vis. Sci. 37, S5 (1996).

    Google Scholar 

  21. McNaughton, P. A., Cervetto, L. & Nunn, B. J. Measurement of the intracellular free calcium concentration in salamander rods. Nature 322, 261–263 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Matthews, H. R. Static and dynamic actions of cytoplasmic Ca2+ in the adaptation of responses to saturating flashes in salamander rods. J. Physiol. (Lond.) 490, 1–15 (1996).

    Article  CAS  Google Scholar 

  23. Lagnado, L., Cervetto, L. & McNaughton, P. A. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J. Physiol. (Lond.) 455, 111–142 (1992).

    Article  CAS  Google Scholar 

  24. Gray-Keller, M. P. & Detwiler, P. B. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13, 849–861 (1994).

    Article  CAS  Google Scholar 

  25. Cervetto, L., Lagnado, L., Perry, R. J., Robinson, D. W. & McNaughton, P. A. Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337, 740–743 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Younger, J. P., McCarthy, S. T. & Owen, W. G. Modulation of the cytosolic free calcium and changes in sensitivity and circulating current occur over the same range of steady-state adapting lights in rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 33, 1104 (1992).

    Google Scholar 

  27. Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L. & Ikura, M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Jones, G. J. Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods. J. Physiol. (Lond.) 487, 441–451 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Gray-Keller, M. P. & Detwiler, P. B. Ca2+ dependence of dark- and light-adapted flash resonses in rod photoreceptors. Neuron 17, 323–331 (1996).

    Article  CAS  Google Scholar 

  30. Sagoo, M. S. & Lagnado, L. Ca2+ increases the apparent affinity of transducin for GTP. Invest. Ophthalmol. Vis. Sci. 38, S614 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank C. Raeburn of the LMB Instrumentation Workshop for assistance. This work was supported by the HFSP. M.S.S. held a scholarship of the University of Cambridge M.B, Ph.D. Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Lagnado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagoo, M., Lagnado, L. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade. Nature 389, 392–395 (1997). https://doi.org/10.1038/38750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38750

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing