Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a clade of nematodes, arthropods and other moulting animals


The arthropods constitute the most diverse animal group, but, despite their rich fossil record and a century of study, their phylogenetic relationships remain unclear1. Taxa previously proposed to be sister groups to the arthropods include Annelida, Onychophora, Tardigrada and others, but hypotheses of phylogenetic relationships have been conflicting2,3. For example, onychophorans, like arthropods, moult periodically, have an arthropod arrangement of haemocoel1,4, and have been related to arthropods in morphological and mitochondrial DNA sequence analyses4,5. Like annelids, they possess segmental nephridia and muscles that are a combination of smooth and obliquely striated fibres6. Our phylogenetic analysis of 18S ribosomal DNA sequences indicates a close relationship between arthropods, nematodes and all other moulting phyla. The results suggest that ecdysis (moulting) arose once and support the idea of a new clade, Ecdysozoa, containing moulting animals: arthropods, tardigrades, onychophorans, nematodes, nematomorphs, kinor-hynchs and priapulids. No support is found for a clade of segmented animals, the Articulata, uniting annelids with arthropods. The hypothesis that nematodes are related to arthropods has important implications for developmental genetic studies using as model systems the nematode Caenorhabditis elegans and the arthropod Drosophila melanogaster, which are generally held to be phylogenetically distant from each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Boudreaux, H. B. Arthropod Phylogeny with Special Reference to Insects (Wiley, New York, 1979).

    Google Scholar 

  2. Raff, R. A., Marshall, C. R. & Turbeville, J. M. Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annu. Rev. Ecol. Syst. 25, 351–375 (1994).

    Article  Google Scholar 

  3. Eernisse, D. J., Albert, J. S. & Anderson, F. E. Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst. Biol. 41, 305–330 (1992).

    Article  Google Scholar 

  4. Ballard, J. W. et al. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258, 1345–1348 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Weygoldt, P. Arthropod relationships: the phylogenetic-systematic approach. Z. Zool. Syst. Evolut.-forsch. 24, 19–35 (1986).

    Article  Google Scholar 

  6. Brusca, R. C. & Brusca, G. J. Invertebrates (Sinauer, Sunderland, MA, 1990).

    Google Scholar 

  7. Halanych, K. M. et al. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267, 1641–1632 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Lake, J. A. The order of sequence alignment can bias the selection of tree topology. Biol. Evol. 8, 378–385 (1991).

    CAS  Google Scholar 

  9. Stewart, C.-B. The powers and pitfalls of parsimony. Nature 361, 603–607 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Winnepenninckx, B. et al. 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol. Biol. Evol. 12, 1132–1137 (1995).

    CAS  PubMed  Google Scholar 

  11. Wright, K. in Microscopic Anatomy of Invertebrates Vol. 4 (eds Harrison, F. W. & Ruppert, E. E.) 111–195 (Wiley-Liss, New York, 1991).

    Google Scholar 

  12. Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences: Paralinear distances. Proc. Natl Acad. Sci. USA 91, 1455–1459 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605–612 (1994).

    CAS  PubMed  Google Scholar 

  14. Field, K. G. et al. Molecular phylogeny of the animal kingdom. Science 239, 748–753 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Hillis, D. M. & Bull, J. J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182–192 (1993).

    Article  Google Scholar 

  16. Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford University Press, 1995).

    Google Scholar 

  17. Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Chapman & Hall, London, 1996).

    Google Scholar 

  18. Balavoine, G. The early emergence of plaryhelminths is contradicted by the agreement between 18S rRNA and Hox data C. R. Acad. Sci. Paris Life Sci. 320, 83–94 (1997).

    Article  CAS  Google Scholar 

  19. Valentine, J. W. Bilaterians of the Precambrian–Cambrian transition and the annelid–arthropod relationship. Proc. Natl Acad. Sci. USA 86, 2272–2275 (1989).

    Article  ADS  CAS  Google Scholar 

  20. petterson, C. The Hierarchy of Life (eds Fernholm, B., Bremer, K. & Jornvall, H.) 471–488 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  21. Lake, J. A. Origin of the Metazoa. Proc. Natl Acad. Sci. USA 87, 763–766 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Ruppert, E. E. in Microscopic Anatomy of Invertebrates Vol. 4, (eds Harrison, R. W. & Ruppert, E. E.) 1–17 (Wiley-Liss, New York, 1991).

    Google Scholar 

  23. de Queiroz, K. & Gauthier, J. Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Syst. Zool. 39, 307–322 (1990).

    Article  Google Scholar 

  24. Boore, J. L., Collins, T. M., Stanton, S., Daehier, L. L. & Brown, W. M. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376 163–165 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Conway Morris, S. The fossil record and the early evolution of the Metazoa. Nature 361, 219–225 (1993).

    Article  ADS  Google Scholar 

  26. Lake, J. A. Calculating the probability of multitaxon evolutionary trees: Bootstrappers Gambit Proc. Natl Acad. Sci. USA 92, 9662–9666 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Goldman, N. Simple diagnostic statistical tests of models for DNA substitution. J. Mol. Evol. 37, 650–661 (1993).

    ADS  CAS  PubMed  Google Scholar 

  28. Felsenstein, J. & Churchill, G. A. A hidden Markov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13, 93–104 (1996).

    Article  CAS  Google Scholar 

  29. Wallace, R. L., Ricci, C. & Malone, G. A cladistic analysis of pseudoceolomate (aschelminth) morphology. Invert. Biol. 115, 104–112 (1996).

    Article  Google Scholar 

  30. Garey, J. R., Krotec, M., Nelson, D. R. & Brooks, J. Molecular analysis supports a Tardigrade–Arthropod association. Invert. Biol. 115, 79–88 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguinaldo, A., Turbeville, J., Linford, L. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing