Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The optical counterpart to γ-ray burst GRB970228 observed using the Hubble Space Telescope

Abstract

Although more than 2,000 astronomical γ-ray bursts (GRBs) have been detected, and numerous models proposed to explain their occurrence1, they have remained enigmatic owing to the lack of an obvious counterpart at other wavelengths2–5. The recent ground-based detection6,7 of a transient optical source in the vicinity of GRB970228 (refs 8–11) may therefore have provided a breakthrough. The optical counterpart appears to be embedded in an extended source which, if a galaxy as has been suggested7,12, would lend weight to those models that place GRBs at cosmological distances. Here we report observations using the Hubble Space Telescope of the transient counterpart and extended source 26 and 39 days after the initial γ-ray outburst. We find that the counterpart has faded since the initial detection (and continues to fade), but the extended source exhibits no significant change in brightness between the two dates of the observations reported here. The size and apparent constancy of the extended source imply that it is extragalactic, but its faintness makes a definitive statement about its nature difficult. Nevertheless, the decay profile of the transient source is consistent with a popular impulsive-fireball model13, which assumes a merger between two neutron stars in a distant galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nemiroff, R. J. A century of gamma ray burst models. Comments Astrophys. 17, 189–205 (1994).

    ADS  Google Scholar 

  2. Fishman, G. J. & Meegan, C. A. Gamma-ray bursts. Annit. Rev. Astron. Astrophys. 33, 415–458 (1995).

    Article  ADS  Google Scholar 

  3. Hurley, K. in Gamma Ray Bursts (eds Paciesas, W. & Fishman, G.) 3–12 (Conf. Proc. 265, Am. Inst. Phys., New York, 1992).

    Google Scholar 

  4. Higdon, J. & Lingenfelter, R. Gamma-ray bursts. Annu. Rev. Astron. Astrophys. 28, 401–436 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Hartman, D. in The Gamma Ray Sky with COMPTON and SIGMA (eds Signore, M., Salati, P. & Verdrenne, G.) 329–367 (NATO ASI Proc. Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  6. Groot, P. J. et al. IAU Circ. No. 6584 (1997).

  7. van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686–689 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Costa, E. IAU Circ. No. 6572 (1997).

  9. Costa, E. et al. IAU Circ. No. 6576 (1997).

  10. Cline, T. L. et al. IAU Circ. No. 6593 (1997).

  11. Hurley, K. et al. IAU Circ. No. 6594 (1997).

  12. Metzger, M. R. et al. IAU Circ No. 6588 (1997).

  13. Meszaros, P. & Rees, M. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–235 (1997).

    Article  ADS  Google Scholar 

  14. Sahu, K. C., Livio, M., Petro, L. & Macchetto, F. D. IAU Circ No. 6606 (1997).

  15. Sahu, K. C., Livio, M., Petro, L. & Macchetto, F. D. et al. IAU Circ No. 6619 (1997).

  16. Frail, D. A. et al. IAU Circ No. 6576 (1997).

  17. Groot, P. J. et al. IAU Circ No. 6574 (1997).

  18. Margon, B., Deutsch, E. W. & Seeker, J. et al. IAU Circ No. 6577 (1997).

  19. Pederson, H. et al. IAU Circ No. 6580 (1997).

  20. Wagner, R. M. & Buie, M. W. et al. IAU Circ No. 6581 (1997).

  21. Wagner, R. M., Foltz, C. B. & Hewett, P. et al. lAU Circ. No. 6581 (1997).

  22. Metzger, M. R. et al. IAU Circ No. 6582 (1997).

  23. Biretta, J. A. et al. WFPC2 Instrument Handbook Version 4.0 (Space Telescope Science Inst, Baltimore, 1996).

    Google Scholar 

  24. Warner, B. Cataclysmic Variable Stars 261 (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  25. Warner, B. Cataclysmic Variable Stars 148 (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  26. Mirzoyan, L. V. in Flares and Flashes (eds Greiner, J., Duerbeck, H. W. & Gershberg, R. E.) 47–54 (Springer, Berlin, 1995).

    Book  Google Scholar 

  27. Panagia, N. in Supernova 1987A in the Large Magellanic Cloud (eds Kafatos, M. & Michalitsianos, A. G.) 96–105 (Cambridge Univ. Press, 1988).

    Google Scholar 

  28. Panagia, N. et al. Coordinated optical, ultraviolet, radio, and X-ray observations of Supernova 1979c in M100. Man. Not. R. Astron. Soc. 192, 861–879 (1980).

  29. Perlmutter, S. et al. A supernova at z = 0.458 and implications for measuring the cosmological deceleration. Astrophys. J. 440, L41–L44 (1995).

    Article  ADS  Google Scholar 

  30. Perlmutter, S. et al. Measurements of cosmological parameters Omega and Lambda from the first 7 supernovae at z > 0.35. Astrophys. J. (in the press).

  31. Podsiadlowski, P., Rees, M. & Ruderman, M. Gamma-ray bursts and the structure of the galactic halo. Mom. Not. R. Astron. Soc. 273, 755–771 (1995).

    Article  ADS  Google Scholar 

  32. Mao, S. & Paczynski, B. On the cosmological origin of gamma-ray bursts. Astrophys. J. 388, L45–L48 (1992).

    Article  ADS  Google Scholar 

  33. Katz, J. Two populations and models of gamma-ray bursts. Astrophys. J. 422, 248–259 (1994).

    Article  ADS  Google Scholar 

  34. Lamb, D. Q. in Neutron Stars: Theory and Observation (eds Ventura, J. & Pines, D.) 545–560 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  35. Hakkila, J., Myers, J. M., Stidham, B. J. & Hartman, D. H. A computerized model of large-scale visual interstellar extinction. Astron. J. (submitted).

  36. Williams, R. E. et al. The Hubble deep field: observations, data reduction, and galaxy photometry. Astron. J. 112, 1335–1389 (1996).

    Article  ADS  Google Scholar 

  37. Carter, B. Cosmic gamma-ray bursts from black hole tidal disruption of stars? Astrophys. J. 391, L67–L70 (1992).

    Article  ADS  Google Scholar 

  38. Liang, E., Kusunose, M., Smith, I. A. & Crider, A. Physical model of gamma-ray burst spectral evolution. Astrophys. J. 479, L35–l38 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Galama, T. et al. The decay of optical emission from the γ-ray burst GRB970228. Nature 387, 479–481 (1997).

    Article  ADS  CAS  Google Scholar 

  40. Paczyński, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  Google Scholar 

  41. Eichler, D., Livio, M., Piran, T. & Schramm, D. Nucleosynthesis, neutrino bursts, and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  42. Phinney, E. S. The rate of neutron star binary mergers in the universe: minimal predictions for gravity wave detectors. Astrophys. J. 380, L17–L21 (1991).

    Article  ADS  Google Scholar 

  43. Narayan, R., Piran, T. & Shemi, A. Neutron star and black hole binaries in the Galaxy. Astrophys. J. 379, L17–L21 (1991).

    Article  ADS  Google Scholar 

  44. Groot, P. J. et al. IAU Circ. No. 6588 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, K., Livio, M., Petro, L. et al. The optical counterpart to γ-ray burst GRB970228 observed using the Hubble Space Telescope. Nature 387, 476–478 (1997). https://doi.org/10.1038/387476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387476a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing