Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Representations of odours and odour mixtures visualized in the honeybee brain


Most animals depend on the identification of odours to locate food or to find mating partners. To accomplish this, the olfactory system must recognize relative concentrations of a large number of substances by analysing complex patterns of chemoreceptor activations1,2, but how these patterns are represented in the brain is not well understood. Previous studies indicated that odours evoke specific patterns of activity in olfactory sensory centres3–7 and led to the hypothesis that single glomeruli in the olfactory bulb of mammals respond to particular receptor types8–10. We made optical recordings in vivo in the honeybee brain to investigate neuronal population responses to odorants delivered naturally to the animal. We report here that odours evoked specific spatio–temporal excitation patterns in the antennal lobe, the structural and functional analogue of the olfactory bulb11. Specific ensembles of active glomeruli represent odours in a combinatorial manner. A comparison between different individuals shows remarkable similarities for a pheromone component, but not for general flower odours. Mixtures evoked patterns that were combinations of the single odorant responses. These combinations were not fully additive, however, indicating inhibitory effects on single glomeruli. Such interactions could be crucial for the formation of singular codes for complex odour blends.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Shepherd, G. M. in Olfaction: A Model System for Computational Neurosdence (eds Davis, J. & Eichenbaum, H.) 3–41 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  2. Laurent, G. Odor Images and Tunes. Neuron 16, 473–476 (1996).

    CAS  Article  Google Scholar 

  3. Stewart, W. B., Kauer, J. S. & Shepherd, G. M. Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715–734 (1979).

    CAS  Article  Google Scholar 

  4. Kauer, J. S. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331, 166–168 (1988).

    ADS  CAS  Article  Google Scholar 

  5. Rodrigues, V. spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res. 453, 299–307 (1988).

    CAS  Article  Google Scholar 

  6. Lieke, E. Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees. Eur. J. Neurosd. 5, 49–55 (1993).

    CAS  Article  Google Scholar 

  7. Cinelli, A. R., Hamilton, K. A. & Kauer, J. S. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. J. Neurophysiol. 73, 2053–2071 (1995).

    CAS  Article  Google Scholar 

  8. Vassar, R. et al. Topographic organization of sensory projections in the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  Article  Google Scholar 

  9. Ressler, K. J., Sullivan, K. J. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  Article  Google Scholar 

  10. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  Article  Google Scholar 

  11. Boeckh, J., Distler, P., Ernst, K. D., Hösl, M. & Malun, D. in Chemosensory Information Processing (ed. Schild, D.) 201–227 (Springer, Berlin, 1990).

    Book  Google Scholar 

  12. Firestein, S., Picco, C. & Menini, A. The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J. Physiol. 468, 1–10 (1993).

    CAS  Article  Google Scholar 

  13. Schild, D. Signal integration in the olfactory system. Trends Neurosci. 17, 366–367 (1994).

    CAS  Article  Google Scholar 

  14. Christensen, T. A., Waldrop, B. R., Harrow, I. D. & Hildebrand, J. G. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173, 385–399 (1993).

    CAS  Article  Google Scholar 

  15. Sun, X., Fonta, C. & Masson, C. Odour quality processing by bee antennal lobe interneurones. Chem. Senses 18, 355–377 (1993).

    CAS  Article  Google Scholar 

  16. Mori, K. & Yoshihara, Y. Molecular recognition and olfactory processing in the mammalian olfactory system. Progr. Neurobiol 45, 585–619 (1995).

    CAS  Article  Google Scholar 

  17. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    ADS  CAS  Article  Google Scholar 

  18. Flanagan, D. & Mercer, A. R. An atlas and 3-D reconstruction of the antennal lobes in the worker honeybee, Apis mellifera. Int. J. Insect Morphol. Embryol. 18, 145–159 (1989).

    Article  Google Scholar 

  19. Christensen, T. A., Hildebrand, J. G., Tumlinson, J. H. & Doolittle, R. E. Sex pheromone blend of Manduca sexta: responses of central olfactory interneurons to antennal stimulation in male moths. Arch. Insect Biochem. Physiol. 10, 281–291 (1989).

    CAS  Article  Google Scholar 

  20. Tank, D. W., Gelperin, A. & Kleinfeld, D. Odors, oscillations, and waves: does it all compute? Science 265, 1819–1820 (1994).

    ADS  CAS  Article  Google Scholar 

  21. Hanson, B. S., Ljungberg, H., Hallberg, E. & Löfstedt, C. Functional specialization of olfactory glomeruli in a moth. Science 256, 1313–1315 (1992).

    ADS  Article  Google Scholar 

  22. Pelz, C., Gerber, B. & Menzel, R. Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J. Exp. Biol. 200, 837–847 (1997).

    CAS  PubMed  Google Scholar 

  23. Yuste, R. & Katz, L. C. Control of postsynaptic Ca++ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).

    CAS  Article  Google Scholar 

  24. O'Donovan, M. J., Ho, S., Sholomenko, G. & Yee, W. Realtime imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J. Neurosci. Meth. 46, 91–106 (1993).

    CAS  Article  Google Scholar 

  25. Akers, R. P. & Getz, W. M. Response of olfactory receptor neurons in honey bees to odorants and their binary mixtures. J. Comp. Physiol. A 173, 169–185 (1993).

    Article  Google Scholar 

  26. Distler, P. GABA-immunohistochemistry as a label for identifying types of local interneurons and their synaptic contacts in the antennal lobes of the american cockroach. Histochemistry 93, 617–626 (1990).

    CAS  Article  Google Scholar 

  27. Hansson, B. S., Anton, S. & Christensen, T. A. Structure and function of antennal lobe neurons in the male turnip moth, Agrotis segetum. J. Comp. Physiol. A 175, 547–562 (1994).

    Article  Google Scholar 

  28. Ache, B. W. Towards a common strategy for transducing olfactory information. Semin. Cell Biol. 5, 55–63 (1994).

    CAS  Article  Google Scholar 

  29. Hammer, M. & Menzel, R. Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630 (1995).

    CAS  Article  Google Scholar 

  30. Kendrick, K. M., Levy, F. & Keverne, E. B. Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256, 833–836 (1992).

    ADS  CAS  Article  Google Scholar 

  31. Friedrich, R. W. & Karsching, S. I. Neuron 833–836 (in the press).

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joerges, J., Küttner, A., Galizia, C. et al. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing