Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scour in large braided rivers and the recognition of sequence stratigraphic boundaries


Alluvial scour into shallow marine sediments may be caused by the incision of a river adjusting to a new base level1–4 following a fall in sea level. The identification of such erosion surfaces1–3 has therefore been pivotal in the reconstruction of past sea-level changes from ancient sedimentary sequences1–14. Here we report data from a study of the Jamuna river, Bangladesh, one of the world's largest modern braided rivers15, which illustrate that bed scour associated with channel confluences and bends alone can be substantial—as much as five times greater than the mean channel depth. Indeed, the basal erosion surfaces produced by such deep scours have characteristics similar to those of boundaries in some ancient sedimentary sequences that have been assumed to result from sea-level fall1–14, potentially leading to radically different interpretations of past variation in base level and climate. We suggest that, to discount unambiguously the influence of fluvial scour in ancient sediments, the erosive boundary should be greater than five times the mean channel depth and extend for distances greater than the floodplain width. Ideally, it should be traceable between different basins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Postmentier, H. W., Jervey, M. T. & Vail, P. R. Eustatic controls on clastic deposition I-conceptual framework. Soc. Econ. Paleontol. Mineral Spec. Publ. 42, 109–124 (1988).

    Google Scholar 

  2. Postmentier, H. W. & Vail, P. R. Eustatic controls on clastic deposition II—Sequence and systems tract models. Soc. Econ. Paleontol. Mineral. Spec. Publ. 42, 125–154 (1988).

    Google Scholar 

  3. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. & Rahmanian, V. D. Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high resolution correlation of time and facies. Am. Assoc. Petrol. Geol. Methods in Exploration 7, (1990).

  4. Dalrymple, R. W., Boyd, R. & Zaitlin, B. A. (eds) Incised-Valley Systems: Origin and Sedimentary Sequences. Soc. Econ. Paleontol. Mineral. Spec. Publ. 51, (1994).

  5. Hampson, G. J., Elliott, T. & Flint, S. S. Critical application of high resolution sequence stratigraphic concepts to the Rough Rock Group (Upper Carboniferous) of northern England. Geol. Soc. London Spec. Publ. 104, 221–246 (1996).

    Article  ADS  Google Scholar 

  6. Aitken, J. F. & Flint, S. S. The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Carboniferous Breathitt Group, eastern Kentucky, USA. Sedimentology 42, 3—30 (1995).

    Article  ADS  Google Scholar 

  7. Flint, S., Aitken, J. & Hampson, G. Application of sequence stratigraphy to coal-bearing coastal plain successions: implications for the UK Coal Measures. Geol. Soc. London Spec. Publ. 82, 1–16 (1995).

    Article  ADS  Google Scholar 

  8. Davies, S. J. & Elliott, T. Spectral gamma ray characterization of high resolution sequence stratigraphy: examples from Upper Carboniferous fluvio-deltaic systems, County Clare, Ireland. Geol. Soc. London Spec. Publ. 104, 25–35 (1996).

    Article  ADS  Google Scholar 

  9. Hampson, G. Discrimination of regionally extensive coals in the Upper Carboniferous of the Pennine Basin, UK, using high resolution sequence stratigraphic concepts. Geol. Soc. London. Spec. Publ. 82, 79–97 (1995).

    Article  ADS  Google Scholar 

  10. Aitken, J. F. & Flint, S. S. Variable expressions of interfluvial sequence boundaries in the Breathitt Group (Pennsylvanian), eastern Kentucky, USA. Geol. Soc. London Spec. Publ. 104, 193–206 (1996).

    Article  ADS  Google Scholar 

  11. Shanley, K. W. & McCabe, P. J. Perspectives on the sequence stratigraphy of continental strata. Am. Assoc. Petrol. Geol. Bull. 78, 544–568 (1994).

    Google Scholar 

  12. Leckie, D., Fox, C. & Tarnocai, C. Multiple paleosols of the late Albian Boulder Creek Formation, British Columbia, Canada. Sedimentology 36, 307–322 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Leeder, M. R. & Stewart, M. D. Fluvial incision and sequence stratigraphy: alluvial responses to relative sea-level fall and their detection in the geological record. Geol. Soc. London Spec. Publ. 103, 25–39 (1996).

    Article  ADS  Google Scholar 

  14. Leckie, D. A. Canterbury Plains, New Zealand—implications for sequence stratigraphic models. Am. Assoc. Petrol. Geol. Bull. 78, 1240–1256 (1994).

    Google Scholar 

  15. Schumm, S. A. & Winkley, B. A. in The Variability of Large Alluvial Rivers 1–9 (Am. Soc. Civ. Engrs., New York, 1994).

    Google Scholar 

  16. Salter, T. Fluvial scour and incision: models for their influence on the development of realistic reservoir geometries. Geol. Soc. London Spec. Publ. 73, 33–51 (1993).

    Article  ADS  Google Scholar 

  17. River Survey Project Flood Action Plan 24 Final Report for Flood Plan Coordinating Committee (Delft Hydraulics/Danish Hydraulics Institute/Hydroland/Approtech/Osiris, Dhaka, 1996).

  18. Klaassen, G. J. & Vermeer, K. Confluence scour in large braided rivers with fine bed material. Proc. Int. Conf. Fluvial Hydraulics, 395–408 (Vituki, Budapest, 1988).

  19. Lindsay, J. F., Holliday, D. W. & Hulbert, A. G. Sequence stratigraphy and the evolution of the Ganges-Brahmaputra delta complex. Am. Assoc. Petrol. Geol. Bull. 75, 1233–1254 (1991).

    Google Scholar 

  20. Umitsu, M. Late Quaternary sedimentary environments and landforms in the Ganges delta. Sedim. Geol. 83, 177–186 (1993).

    Article  ADS  Google Scholar 

  21. Ashmore, P. E. & Parker, G. Confluence scour in coarse braided streams. Wat. Resour. Res. 19, 392–402 (1983).

    Article  ADS  Google Scholar 

  22. Best, J. L. Sediment transport and bed morphology at river channel confluences. Sedimentology 35, 481–498 (1988).

    Article  ADS  Google Scholar 

  23. Klaassen, G. J., Mosselman, E. & Br¨hl, H. On the prediction of planform changes in braided sand-bed rivers. Proc. Int. Conf. Hydrosci. Engng. 134–146 (Centre for Comp. Hydroscience and Engng, Mississippi, 1993).

    Google Scholar 

  24. Barua, D. K. On the environmental controls of Bangladesh river systems. Asia Pacif. J. Envir. Dev. 1, 81–98 (1994).

    Google Scholar 

  25. Thorne, C. R., Russell, A. P. G. & Alam, M. K. Planform pattern and channel evolution of the Brahmaputra River, Bangladesh. Geol. Soc. London Spec. Publ. 75, 257–276 (1993).

    Article  ADS  Google Scholar 

  26. Winkley, B. R., Lesleighter, E. J. & Cooney, J. R. in The Variability of Large Alluvial Rivers 269–284 (Am. Soc. Civ. Engrs., New York, 1994).

    Google Scholar 

  27. Murray, A. B. & Paola, C. A cellular model of braided rivers. Nature 371, 54–57 (1994).

    Article  ADS  Google Scholar 

  28. Peters, J. J. Morphological studies and data needs. Proc. Int. Workshop on Morphological Behaviour of Major Rivers in Bangladesh (Dhaka, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, J., Ashworth, P. Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature 387, 275–277 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing