Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome


Mice lacking the imprinted Cdk inhibitor p57KIP2 have altered cell proliferation and differentiation, leading to abdominal muscle defects; cleft palate; endochondral bone ossification defects with incomplete differentiation of hypertrophic chondrocytes; renal medullary dysplasia; adrenal cortical hyperplasia and cytomegaly; and lens cell hyperproliferation and apoptosis. Many of these phenotypes are also seen in patients with Beckwith–Wiedemann syndrome, a pleiotropic hereditary disorder characterized by overgrowth and predisposition to cancer, suggesting that loss of p57KIP2 expression may play a role in the condition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    1. Harper, J. W. & Elledge, S. J. Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev. 6,56-64 (1996). 2. Sherr, C. J. Cancer cell cycles. Science 274, 1672-1677 (1996). 3. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323-330 (1995). 4. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27-37 (1996). 5. Parker, S. B. et al. p53-Independent expression of p21Clpl in muscle and other terminally differentiating cells. Science 267, 1024-1027 (1995). 6. Deng, C. et al. Mice lacking p2iapl/WAF1 undergo normal development, but are defective in Gl checkpoint control. Cell 82, 675-684 (1995). 7. Nakayama, K. et al. Mice lacking p27KIP1 display increased body size, multiple organ hyperplasia, retinal displasia, and pituitary tumors. Cell 85, 707-720 (1996). 8. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27KIP1. Cell 85, 721-732 (1996). 9. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kipl-deficient mice. Cell 85, 733-744 (1996). 10. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk-inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650-662 (1995). 11. Lee, M. L. etal. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639-649 (1995). 12. Hastie, N. D. The genetics of Wilms' tumor-a case of disrupted development. Annu. Rev. Genet. 28, 523-558 (1994). 13. Wiedemann, H. R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur. J. Pediatr. 141, 129-134 (1983). 14. Junien, C. Beckwith-Wiedemann syndrome, tumourigenesis and imprinting. Curr. Opin. Biol. 2, 431-438 (1992). 15. Matsuoka, S. et al. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor p57rap2, on chromosome llplS. Proc. Natl Acad. Sci. USA 93, 3026-3030 (1996). 16. Hatada, I. & Mukai, T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nature Genet. 11, 204-206 (1995). 17. Hoovers, J. et al Multiple genetic loci within Ilpl5.5 denned by Beckwith-Wiedemann Syndrome rearrangement breakpoints and subchromosomal transferable fragments. Proc. Natl Acad. Sci. USA 92, 12456-12460 (1995). 18. Hatada, I. et al An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nature Genet. 14, 171-173 (1996). 19. Kaufman, M. H. The Atlas of Mouse Development (Academic, London, 1992). 20. Ferguson, M. J. W. Palate development. Development (suppl.) 103, 41-60 (1988). 21. Beckwith, B. Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects: Original Article Series 2 Vol. V No. 2 (ed. Bergsma, D.) 188-196 (The National Foundation, 1969). 22. Hepinstall, R. H. in Pathology of the Kidney Vol. 1, 114-155 (Little, Brown, Boston, MA, 1992). 23. Jacenko, O. et al. Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365, 56-61 (1993). 24. McAvoy, J. W. Induction of the eye lens. Differentiation 17, 137-149 (1996). 25. Morgenbesser, S. D. et al. p53-dependent apoptosis produced by Rb deficiency in the developing mouse lens. Nature 371, 72-74 (1994). 26. Cobrink, D. et al. Shared role of the Rb-related p!30 and p!07 proteins in limb development. Genes Dev. 10, 1633-1644 (1996). 27. Elliott, M. et al. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin. Genet. 46, 168-174 (1994). 28. Takato, T., Kamei, M., Kato, K. & Kitano, I. Cleft palate in the Beckwith-Wiedemann syndrome. Ann. Plastic Surg. 22, 347-349 (1989). 29. Sotelo-Avila, C., Gonzalez-Crussi, F. & Fowler, J. W. Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential/. Pediatr. 96, 47-50 (1980). 30. Leighton, P. A. et al Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34-39 (1995). 31. Weksberg, R., Shem, D. R., Song, Q. L. & Squire, J, Disruption of IGF2 imprinting in Beckwith-Wiedemann Syndrome. Nature Genet. 5, 143-149 (1993). 32. Ramirez-Solis, R. et al. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73, 279-294 (1993). 33. Dynlacht, B. D. et al. Purification and analysis of CIP/KIP proteins. Methods Enzymol. (in the press).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, P., Liégeois, N., Wong, C. et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387, 151–158 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing