Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline

Abstract

Adrenaline and noradrenaline, the main effectors of the sympathetic nervous system and adrenal medulla, respectively, are thought to control adiposity and energy balance through several mechanisms. They promote catabolism of triglycerides and glycogen1, stimulate food intake when injected into the central nervous system2, activate thermogenesis in brown adipose tissue3,4, and regulate heat loss through modulation of peripheral vasoconstriction and piloerection1. Thermogenesis in brown adipose tissue occurs in response to cold and overeating (diet induced)5-7, and there is an inverse relationship between diet-induced thermogenesis and obesity both in humans8 and in animal models9-12 . As a potential model for obesity, we generated mice that cannot synthesize noradrenaline or adrenaline by inactivating the gene that encodes dopamine β-hydroxylase. These mice are cold intolerant because they have impaired peripheral vasoconstriction and are unable to induce thermogenesis in brown adipose tissue through uncoupling protein (UCP1). The mutants have increased food intake but do not become obese because their basal metabolic rate is also elevated. The unexpected increase in basal metabolic rate is not due to hyperthyroidism, compensation by the widely expressed uncoupling protein UCP2, or shivering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landsberg, L. & Young, J. B. Catecholamines and the adrenal medulla. in Williams Textbook of Endrocrinology 8th edn (eds Wilson, J. D. & Foster, D. W.) 621–705 (W.B. Saunders, Philadelphia, 1992).

    Google Scholar 

  2. Goldman, C. K., Marino, L. & Leibowitz, S. F. Postsynaptic α2-noradrenergic receptors mediate feeding induced by paraventricular nucleus injection of norepinephrine and clonidine. Eur. J. Pharmacol. 115, 11–19 (1985).

    Article  CAS  Google Scholar 

  3. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  Google Scholar 

  4. Klaus, S., Casteilla, L., Bouillard, F. & Ricquier, D. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23, 791–801 (1991).

    Article  CAS  Google Scholar 

  5. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Brooks, S. L. et al. Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature 286, 274–276 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Glick, Z., Teague, R. J. & Bray, G. A. Brown adipose tissue: thermogenic response increased by a single low protein, high carbohydrate meal. Science 213, 1125–1127 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Jung, R. T., Shetty, P. S., James, W. P. T, Barrand, M. A. & Callingham, B. A. Reduced thermogenesis in obesity. Nature 279, 322–323 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Bray, G. A., York, D. A. & Fisler, J. S. Experimental obesity: a homeostatic failure due to defective nutrient stimulation of the sympathetic nervous system. Vitam. Horm. 45, 1–125 (1989).

    Article  CAS  Google Scholar 

  10. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Hamann, A., Flier, J. S. & Lowell, B. B. Decreased brown fat markedly enhances susceptibility to dietinduced obesity, diabetes, and hyperlipidemia. Endocrinology 137, 21–29 (1996).

    Article  CAS  Google Scholar 

  12. Susulic, V. S. et al. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270, 29483–29492 (1995).

    Article  CAS  Google Scholar 

  13. Thomas, S. A., Matsumoto, A. M. & Palmiter, R. D. Noradrenaline is essential for mouse fetal development . Nature 374, 643–646 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Silva, J. E. Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine. Mol. Endocrinol 2, 706–713 (1988).

    Article  CAS  Google Scholar 

  15. Geloen, A., Collet, A. J., Guay, G. & Bukowiecki, L. J. β-adrenergic stimulation of brown adipocyte proliferation. Am. J. Physiol. 254, C175–C182 (1988).

    Article  CAS  Google Scholar 

  16. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  ADS  Google Scholar 

  17. Larson, P. R. & Ingbar, S. H. The thyroid gland. In Williams Textbook of Endocrinology 8th edn 357–488 (eds Wilson, J. D. & Foster, D. W.) (W.B. Saunders, Philadelphia, 1992).

    Google Scholar 

  18. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nature Genet. 15, 269–273 (1997).

    Article  CAS  Google Scholar 

  19. Siviy, S. M., Kritikos, A, Atrens, D. M. & Shepherd, A. Effects of norepinephrine infused in the paraventricular hypothalamus on energy expenditure in the rat. Brain Res. 487, 79–88 (1989).

    Article  CAS  Google Scholar 

  20. McGregor, I. S., Menendez, J. A, Atrens, D. M. & Lin, H. Q. Prefrontal cortex α2 adrenoceptors and energy balance. Brain Res. Bull. 26, 683–691 (1991).

    Article  CAS  Google Scholar 

  21. Zolovick, A. J., Rossi III, J., Davies, R. F. & Panksepp, J. An improved pharmacoogical procedure for depletion of noradrenaline: pharmacoogy and assessment of noradrenaline-behaviors. Eur J. Pharmacol. 77, 265–271 (1982).

    Article  CAS  Google Scholar 

  22. Himms-Hagen, J. Role of brown adipose tissue thermogenesis in control of thermoregulatory feeding in rats: a new hypothesis that links thermostatic and glucostatic hypotheses for control of food intake. Proc. Soc. Exp. Biol. Med. 208, 159–169 (1995).

    Article  CAS  Google Scholar 

  23. Erickson, J. C., Clegg, K. E. & Palmiter, R. D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Leibowitz, S. F. Brain neuropeptide Y: an integrator of endocrine, metabolic and behavioral processes. Brain Res. Bull 27, 333–337 (1991).

    Article  CAS  Google Scholar 

  25. Ahren, B., Mansson, S., Gingerich, R. L. & Havel, P. J. Regulation of plasma leptin in mice: influence of age, high-fat diet, and fasting. Am. J. Physiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S., Palmiter, R. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387, 94–97 (1997). https://doi.org/10.1038/387094a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387094a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing