Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural features in a brittle–ductile wax model of continental extension

Abstract

Structural features produced during the rifting of continents depend on the layered rheological properties of the crust and lithosphere and, in particular, on the presence of any transitions between brittle and ductile behaviour1. Here we use a wax model to explore the gross structural response of continental lithosphere under pure shear extension in the presence of a continuous brittle–ductile transition. The wax models were deformed under various boundary conditions to reflect a variety of different regions, most notably the Basin and Range province of North America. Our experiments show the development of listric normal faults, structures common to regions of continental extension. We also observe the formation of distributed and discrete rifting, and intrusion and occlusion of the upper brittle layer by the ductile lower layer. The factor controlling deformation style in each case appears to be the relative thickness of the brittle and ductile layers, although a relatively high rate of strain generally promotes discrete rifting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coward, M. P., Dewey, J. F. & Hancock, P. L. Continental Extensional Tectonics (Spec. Publ. 28, Geol. Soc. London, 1987).

    Google Scholar 

  2. Oldenburg, D. W. & Brune, J. N. Ridge transform fault spreading pattern in freezing wax. Science 178, 301–304 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Oldenburg, D. W. Brune, J. N. An explanation for the orthogonality of ocean ridges and transform faults. J. Geophys. Res. 80, 2575–2585 (1975).

    Article  ADS  Google Scholar 

  4. Yin, A. Origin of regional, rooted low-angle normal faults: a mechanical model and its tectonic implications. Tectonics 8, 469–482 (1989).

    Article  ADS  Google Scholar 

  5. Spencer, J. E. & Chase, C. G. Role of crustal flexure in initiation of low-angle normal faults and implications for structural evolution of the Basin and Range province. J. Geophys. Res. 94, 1765–1775 1989).

    Article  ADS  Google Scholar 

  6. Melosh, H. J. Mechanical basis for low-angle normal faulting in the Basin and Range province. Nature 343, 331–335 (1990).

    Article  ADS  Google Scholar 

  7. Buck, W. R. Modes of continental lithospheric extension. J. Geophys. Res. 96, 20161–20178 (1991).

    Article  ADS  Google Scholar 

  8. Longwell, C. R. Low-angle normal faults in the Basin and Range province. Eos 26, 107–118 (1945).

    Google Scholar 

  9. Wernicke, B. & Burchfiel, B. C. Modes of extensional tectonics. J. Struct. Geol. 4, 105–115 (1982).

    Article  ADS  Google Scholar 

  10. Anders, M. H. & Christie-Blick, N. Is the Sevier Desert reflection of west-central Utah a normal fault? Geology 22, 771–774 (1994).

    Article  ADS  Google Scholar 

  11. Wernicke, B. Low-angle normal faults and seismicity: a review. J. Geophys. Res. 100, 20159–20174 (1995).

    Article  ADS  Google Scholar 

  12. Bradshaw, G. A. & Zoback, M. D. Listric normal faulting, stress refraction, and the state of stress in the Gulf Coast basin. Geology 16, 271–274 (1988).

    Article  ADS  Google Scholar 

  13. Proffett, J. M. J. Cenozoic geology of the Yerington district, Nevada, and implications for the nature and origin of Basin and Range faulting. Geol. Soc. Am. Bull. 88, 247–266 (1977).

    Article  ADS  Google Scholar 

  14. Vendeville, B. & Cobbold, P. R. How normal faulting and sedimentation interact to produce listric fault profiles and stratigraphic wedges. J. Struct. Geol. 10, 649–659 (1988).

    Article  ADS  Google Scholar 

  15. Brun, J.-P., Sokoutis, D. & Van Den Driessche, J. Analog modeling of detachment fault systems and core complexes. Geology 22, 319–322 (1994).

    Article  ADS  Google Scholar 

  16. Axen, G. J. Pore pressure, stress increase, and fault weakening in low-angle normal faulting. J. Geophys. Res. 97, 8979–8991 (1992).

    Article  ADS  Google Scholar 

  17. Davis, G. A. & Lister, G. S. in Processes in Continental Lithospheric Deformation (ed. Clark, S. P. J.) 133–159 (Spec. Pap. 218, Geol. Soc. Am., Boulder, 1988).

    Book  Google Scholar 

  18. Scott, R. J. & Lister, G. S. Detachment faults: evidence for a low-angle origin. Geology 20, 833–836 (1992).

    Article  ADS  Google Scholar 

  19. Crittenden, M. D., Coney, P. J. Jr & Davis, G. H. in Cordilleran Metamorphic Core Complexes (Mem. 153, Geol. Soc. Am, Boulder, 1980).

    Google Scholar 

  20. Wernicke, B. in Exposed Cross-sections of the Continental Crust (eds Salisbury, M. H. & Fountain, D M.) 509–544 (Kluwer Academic, Boston, MA, 1990).

    Book  Google Scholar 

  21. Hauser, E. et al. Crustal structure of eastern Nevada from COCORP deep seismic reflection data. Geol. Soc. Am. Bull. 99, 833–844 (1987).

    Article  ADS  Google Scholar 

  22. Kruse, S., McNutt, M., Phipps-Morgan, J. & Royden, L. Lithospheric extension near Lake Mead, Nevada: a model for ductile flow in the lower crust. J. Geophys. Res. 96, 4435–4456 (1991).

    Article  ADS  Google Scholar 

  23. Gans, P. B. An open-sysetm, two-layer crustal stretching model for the eastern Great Basin. Tectonics 6, 1–12 (1987).

    Article  ADS  Google Scholar 

  24. Block, L. & Royden, L. H. Core complex geometries and regional scale flow in the lower crust. Tectonics 9, 557–567 (1990).

    Article  ADS  Google Scholar 

  25. Bird, P. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res. 96, 10275–10286 (1991).

    Article  ADS  Google Scholar 

  26. King, G. & Ellis, M. The origin of large local uplift in extensional regions. Nature 348, 689–693 (1990).

    Article  ADS  Google Scholar 

  27. Coney, P. J. in Cenozoic Tectonics and Regional Geophysics of the Western Cordillera (eds Smith, R. B. & Eaton, G. P.) 33–50 (Geol. Soc. Am., Boulder, CO, 1978).

    Book  Google Scholar 

  28. Jackson, M. P. A. & Vendeville, B. Regional extension as a geologic trigger for diapirism. Geol. Soc. Am. Bull. 106, 57–73 (1994).

    Article  ADS  Google Scholar 

  29. Mancktelow, N. S. The rheology of paraffin wax and its usefulness as an analogue for rocks. Geol Inst. Univ. Uppsala 14, 181–193 (1988).

    Google Scholar 

  30. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Hildenbrand, T. G. Rift structure of the northern Mississippi embayrnent from the analysis of gravity and magnetic data. J. Geophys. Res. 90, 12607–12622 (1985).

    Article  ADS  Google Scholar 

  32. Jones, C. H., Kanamori, H. & Roecker, S. W. Missing roots and mantle 'drips': regional Pn and teleseismic arrival times in the southern Sierra Nevada and vicinity. J. Geophys. Res. 99, 4567–4601 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, J., Ellis, M. Structural features in a brittle–ductile wax model of continental extension. Nature 387, 67–70 (1997). https://doi.org/10.1038/387067a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387067a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing