Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temperature effects on the acidity of remote alpine lakes

Abstract

Climate variations and changes in sulphur and nitrogen deposition from the atmosphere influence the acid–base balance of sensitive lakes in a complex and site-specific way1–3. For example, although lakes in several regions have shown a decline in sulphate concentration following reductions in atmospheric sulphate deposition4–6, the expected recovery of pH and alkalinity has not always taken place, implicating an additional response to changes in the local climate. Here we report a study of 57 remote alpine lakes which shows that, between 1985 and 1995, lake pH and the concentration of sulphate, base cations and silica have increased, whereas inorganic nitrogen concentrations have decreased. This contrasts with atmospheric input trends, which have led to a decrease in sulphate and a slight increase in nitrogen deposition over the same period7,8. We propose that the changes in lake chemistry are therefore likely to be caused by enhanced weathering and increased biological activity resulting from an increase in air temperature of about 1 °C since 1985. Our analysis of an alpine lake core covering a 200-year period provides further evidence for a strong positive correlation between pH and mean air temperatures, and thus for the high sensitivity of lakes at high altitudes and high latitudes to climate warming. In these remote locations, temperature effects, rather than acid deposition, appear to dominate changes in lake acidity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schindler, D. W., Curtis, P. J., Parker, B. R. & Stainton, M. P. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379, 705–708 (1996).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Yan, N. D., Keller, W., Scully, N. M., Lean, D. R. S. & Dillon, P. J. Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381, 141–143 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wright, R. F. & Schindler, D. W. Interaction of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Wat. Air Soil Pollut. 85, 89–99 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gunn, J. M. & Keller, W. Biological recovery of an acid lake after reductions in industrial emissions of sulphur. Nature 345, 431–433 (1990).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ek, A., Grahn, O., Hultberg, H. & Renberg, I. Recovery from acidification in lake Orvattrnet, Sweden. Wat. Air Soil Pollut. 85,1795–1800 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kros, J., Groenenberg, J. E., De Vries, W. & Van der Salm, C. Uncertainties in long-term predictions of forest soil acidification due to neglecting seasonal variability. Wat. Air Soil Pollut. 79, 353–375 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Puxbaurm H., Kovar, A. & Kaliua, M. in Seasonal Snow Packs(ed. Davies, T. D.) 273–297 (NATO ASI Ser. G28, Springer, 1991).

    Book  Google Scholar 

  8. 8

    Mosello, R., Tartari, G. & Tartari, G. A. Chemistry of bulk deposition at Pallanza (Northern Italy) during the decade 1975-1984. Mem. Ist. Ital. Idrobiol. 43, 311–332 (1985).

    Google Scholar 

  9. 9

    Psenner, R. Chemistry of high mountain lakes in siliceous catchments of the central Eastern Alps. Aquat. Sci. 51, 108–127 (1989).

    Article  Google Scholar 

  10. 10

    Wograth, S. & Psenner, R. Seasonal, annual and long-term variability in the water chemistry of a remote high mountain lake: acid rain versus natural changes. Wat. Air Soil Pollut. 85, 359–364 (1995).

    ADS  Article  Google Scholar 

  11. 11

    Beniston, M., Rebetez, M., Giorgi, F. & Marinucci, M. R. An analysis of regional climate change in Switzerland. Theor Appl. Climatol. 49, 135–159 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Nicolussi, K. & Bortenschlager, S. CO2-Anstieg und Jahrringbreitentrends bei Pinus cembra in den westlichen Zentralalpen Tirols (Osterreich). Ber, nat-med Verein Innsbruck 82, 61–77 (1995).

    Google Scholar 

  13. 13

    Report on Antrhropogenic Climate Changes and Possible Effects on Austria (Austrian Academy of Sciences, Vienna, 1991).

  14. 14

    Schindler, D. W. et al. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogn 41, 1004–1017 (1996).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Schindler, D. W. et al. Effects of climatic warming on lakes of the central boreal forest. Science 250, 967–970 (1990).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Patzelt, G. Gletscherbericht 1993-94. Mitt. Öster Alpenverein 50, 18–23 (1995).

    Google Scholar 

  17. 17

    Chillrud, S. N., Pedrozo, F. L., Temporetti, P. F. Planas, H. F. & Froelich, P. N. Chemical weathering of phosphate and germanium in glacial meltwater streams: effects of subglacial pyrite oxidation. Limnol. Oceanogr 39, 1130–1140 (1994).

    ADS  Article  Google Scholar 

  18. 18

    Bayley, S. E., Schindler, D. W., Parker, B. R.,, Stainton, M. P. & Beaty, K. G. Retention and release of S from freshwater wetland. Biogeochemistry 17, 191–204 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Lazerte, B. The impact of drought and acidification on the chemical exports from a minerotrophic conifer swamp. Biogeochemistry 18, 153–175 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Webster, K. E., Newell, A. D., Baker, L. A. & Brezonik, P. L. Climatically induced rapid acidification of a softwater seepage lake. Nature 347, 374–376 (1990).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Webster, K. E. & Brezoniki P. L. Climate confounds detection of chemical trends related to acid deposition in upper midwest lakes in the USA. Wat. Air Soil Pollut. 85, 1575–1580 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Psenner, R. & Schmidt, R. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356, 781–783 (1992).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Clair, T. A. et al. Regional precipitation and surface-water chemistry trends in southeastern Canada. Can. J. Fish. Aquat. Sci. 52, 197–212 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Camarero, L. et al. Acidification in high mountain lakes in central, southwest and southeast Europe (Alps, Pyrenees, Pirin). Limnologica 25, 141–156 (1995).

    CAS  Google Scholar 

  26. 26

    Miller, E. K., Blum, J. D. & Friedland, A. J. Determination of soil exchangeable- cation loss and weathering rates using Sr isotopes. Nature 362, 438–441 (1993).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hedin, L. O. et al. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367, 351–354 (1994).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Battarbee, R. W. in Handbook of Holocene Paleoecology and Paleohydrology (ed. Berglund, B. E.) 527– 531(Wiley, New York, 1986).

    Google Scholar 

  30. 30

    Marchetto, A. & Schmidt, R. A regional calibration data set to infer lakewater pH from sediment diatom assemblages in alpine lakes. Mem. Ist. Ital. Idrobiol. 51, 115–125 (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sommaruga-WÖgrath, S., Koinig, K., Schmidt, R. et al. Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67 (1997). https://doi.org/10.1038/387064a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing