Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Encapsulation of bilayer vesicles by self-assembly

Abstract

Vesicles of lipid bilayers have been investigated as drug-delivery vehicles for almost 20 years1-8. The vesicles’ interior space is separated from the surrounding solution because small molecules have only limited permeability through the bilayer. Single-walled (unilamellar) vesicles are made by a variety of non-equilibrium techniques, including mechanical disruption of lamellar phases by sonication or extrusion through filters, or chemical disruption by detergent dialysis or solvent removal5. These techniques do not, however, allow the encapsulation of a specific volume, nor can they be used to encapsulate other vesicles. Here we show that molecular-recognition processes mediated by lipophilic receptors and substrates (here the biotin–streptavidin complex)9 can be used to produce a multicompartmental aggregate of tethered vesicles encapsulated within a large bilayer vesicle. We can these encapsulated aggregates vesosomes. Encapsulation is achieved by unrolling bilayers from cochleate cylinders5,10-12 which are tethered to the aggregate by biotin–streptavidin coupling. These compartmentalized vesosomes could provide vehicles for multicomponent or multifunctional drug delivery2-4,6;in particular, the encapsulating membrane could significantly modify permeation properties, or could be used to enhance the biocompatibility of the system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bangham, A. D., Standish, M. M. & Watkins, J. C. Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965).

    Article  CAS  Google Scholar 

  2. Lasic, D. D. Liposomes: from Physics to Applications (Elsevier, Amsterdam, 1993).

    Google Scholar 

  3. Gregoriadis, G. Liposomes as Drug Carriers—Recent Trends and Progress (Wiley, New York, 1988).

    Google Scholar 

  4. Fendler, J. Membrane Mimetic Chemistry (Wiley, New York, 1983).

    Google Scholar 

  5. Szoka, F. & Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980).

    Article  CAS  Google Scholar 

  6. New, R. R. C. (ed.) Liposomes: a Practical Approach (Oxford Univ. Press, 1990).

  7. Spector, M. S., Zasadzinski, J. A. & Sankaram, M. B. Topology of multivesicular liposomes, a model biliquid foam. Langmuir 12, 4704–4708 (1996).

    Article  CAS  Google Scholar 

  8. Allen, T. M., Hansen, C. B. & Lopes de Menezes, D. E. Pharmacokinetics of long-circulating liposomes. Adv. Drug Delivery Rev. 16, 267–284 (1995).

    Article  CAS  Google Scholar 

  9. Chiruvolu, S., Walker, S., Leckband, D., Israelachvili, J. & Zasadzinski, J. Higher order self-assembly of vesicles by ligand-receptor interactions. Science 264, 1753–1756 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Papahadjopoulos, D., Vail, W. J., Jacobson, K. & Poste, G. Cochleate lipid cylinders formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta 394, 483–491 (1975).

    Article  CAS  Google Scholar 

  11. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A. & Poste, G. Studies on membrane fusion II: induction of fusion in pure phospholipid membranes by calcium ions and other divalent ions. Biochim. Biophys. Acta 448, 265–283 (1976).

    Article  CAS  Google Scholar 

  12. Coossen, J. R. & Rand, R. P. Structural effects of neutral lipids on divalent cation-induced interactions of phosphatidylserine-containing bilayers. Biophys. J. 68, 1009–1018 (1995).

    Article  ADS  Google Scholar 

  13. Papahadjopoulos, D. et al. Studies on membrane fusion III: the role of calcium-induced phase changes. Biochim. Biophys. Acta 465, 579–598 (1977).

    Article  CAS  Google Scholar 

  14. Allen, T. M. & Chonn, A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223, 42–46 (1987).

    Article  CAS  Google Scholar 

  15. Uster, P. S. et al. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 386, 243–246 (1996).

    Article  CAS  Google Scholar 

  16. Zalipsky, S., Hansen, C. B., Lopes de Menezes, D. E. & Allen, T. M. Long-circulating, polyethylene glycol grafted immunopoliposimes. J. Controlled Release 39, 153–161 (1996).

    Article  CAS  Google Scholar 

  17. Wong, J. Y., Kuhl, T. L., Israelachvili, J. N., Mullah, N. & Zalipsky, S. Direct measurement of a tethered ligand-receptor interaction potential. Science 275, 820–822 (1997).

    Article  CAS  Google Scholar 

  18. Walker, S. A. thesis, Univ. California, Santa Barbara, (1996).

  19. Kennedy, M. T. thesis, Univ. California, Santa Barbara (1998).

  20. Tardi, P. G., Boman, N. L. & Cullis, P. R. Liposomal doxorubicin. J. Drug Targeting 4, 129–140 (1996).

    Article  CAS  Google Scholar 

  21. Papahadjopolous, D. et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antiturmour therapeutic efficacy. Proc. Natl Acad. Sci. USA 88, 11460–11464 (1991).

    Article  ADS  Google Scholar 

  22. Chiruvolu, S., Naranjo, E. & Zasadzinski, J. A. in Structure and Flow in Surfactant Solutions Ch. 5 (eds Herb, C. A. & Prud’homme, R. K.) (Am. Chem. Soc., Washington DC, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, S., Kennedy, M. & Zasadzinski, J. Encapsulation of bilayer vesicles by self-assembly. Nature 387, 61–64 (1997). https://doi.org/10.1038/387061a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/387061a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing