Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Implications of crustal property variations for models of Tibetan plateau evolution

Abstract

Shear-coupled teleseismic P waves sampling the interior of the Tibetan plateau provide evidence of systematic variations in crustal structure. The crust thins by up to 20 km from south to north with a concomitant increase in Poisson's ratio from normal values in the south to unusually high values in the north. This suggests that the crust of the northern plateau is partially melted due to high temperatures. These changes imply spatial and perhaps temporal variations in the way the elevation of the high plateau is created and maintained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fielding E., Isacks, B., Barazangi, M. & Duncan, C. How flat is Tibet? Geology 22, 163–167 (1994).

    Article  ADS  Google Scholar 

  2. Brandon, C. & Romanowicz, B. A "no-lid" zone in the central Chang-Thang Platform of Tibet: Evidence from pure path velocity measurements of long period Rayleigh waves. J. Geophys. Res. 91, 6547–6564 (1986).

    Article  ADS  Google Scholar 

  3. Molnar, P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya, and the Karakoram, and their tectonic implications. Phil. Trans. R. Soc. Lond. A 326, 33–88 (1988).

    Article  ADS  Google Scholar 

  4. Owens, T. J., Randall, G. E., Wu, F. T. & Zeng, R. PASSCAL instrument performance during the Tibetan Plateau passive seismic experiment. Bull. Seismol. Soc. Am. 83, 1959–1970 (1993).

    Google Scholar 

  5. Zhao, W. et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 366, 557–559 (1993).

    Article  ADS  Google Scholar 

  6. Nelson, D. et al. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results. Science 274, 1684–1687 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Hirn, A. et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature 375, 571–574 1995).

    Article  ADS  CAS  Google Scholar 

  8. Wittlinger, G. et al. Seismic tomography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts. Earth Planet. Sci. Lett. 139, 263–279 (1996).

    Article  ADS  CAS  Google Scholar 

  9. McNamara, D. E., Owens, T. J., Silver, P. G. & Wu, F. T. Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res. 99, 13655–13665 (1994).

    Article  ADS  Google Scholar 

  10. McNamara, D. E., Owens, T. J. & Walter, W. R. Observations of regional phase propagation across the Tibetan Plateau. J. Geophys. Res. 100, 22215–22229 (1995).

    Article  ADS  Google Scholar 

  11. Ni, J. & Barazangi, M. High-frequency seismic wave propagation beneath the Indian shield, Himalayan arc, Tibetan Plateau and surrounding regions: High uppermost velocities and efficient propagation beneath Tibet. Geophys. J. R. Astron. Soc. 72, 665–689 (1983).

    Article  ADS  Google Scholar 

  12. Jordan, T. J. & Frazer, L. N. Crustal and upper mantle structure from Sp phases. J. Geophys. Res. 80, 1504–1518 (1975).

    Article  ADS  Google Scholar 

  13. Zandt, G. & Randall, G. E. Observations of shear-coupled P-waves. Geophys. Res. Lett. 12, 565–568 (1985).

    Article  ADS  Google Scholar 

  14. Baag, C. E. & Langston, C . A. Diffracted Sp generated under the Australian Shield. Geophys. J. R. Astron. Soc. 80, 363–386 (1985).

    Article  ADS  Google Scholar 

  15. Langston, C. A. The SsPmp phase in regional wave propagation. Bull. Seismol. Soc. Am. 86, 133–143 (1996).

    Google Scholar 

  16. Bath, M. & Stefansson, R. S-P conversion at the base of the crust. Ann. Geofis. 19, 119–130 (1966).

    Google Scholar 

  17. Randall, G. E. Efficient calculation of complete differential seismograms for laterally homogeneous earth models. Geophys. J. Int. 118, 245–254 (1994).

    Article  ADS  Google Scholar 

  18. Zandt, G. & Ammon, C. J. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature 374, 152–154 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Zhao, L.-S., Sen, M. K., Soffa, P. & Frohlich, C. Application of very fast simulated annealing ot the determination of the crustal structure beneath Tibet. Geophys. J. Int. 125, 355–370 (1996).

    Article  ADS  Google Scholar 

  20. Zhu, L., Zeng, R., Wu, F., Owens, T. & Randall, G. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms. Acta Seismol. Sinica 6, 305–316 (1993).

    Article  ADS  Google Scholar 

  21. Zhu, L., Owens, T. J. & Randall, G. E. Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions. Bull. Seismol. Soc. Am. 85, 1531–1540 (1995).

    Google Scholar 

  22. Vandecar, J. & McNamara, D. E. 3-D upper-mantle velocity structure beneath the Tibetan Plateau (abstr.). Eos 77, F694 (1996).

  23. Rodgers, A. J. & Schwartz, S. Y. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms. Geophys. Res. Lett. 24, 9–12(1997).

    Article  ADS  Google Scholar 

  24. Christiansen, N. Poisson's ratio and crustal seismology. J. Geophys. Res. 102, 3139–3156 (1996).

    Article  ADS  Google Scholar 

  25. Beghoul, N., Barazangi, M. & Isacks, B. Lithospheric structure of Tibet and western North America: Mechanisms of uplift and a comparative study. J. Geophys. Res. 98, 1997–2016 (1993).

    Article  ADS  Google Scholar 

  26. Holt, W. E. & Wallace, T. C. Crustal thickness and upper mantle velocities in the Tibetan Plateau region from the inversion of regional Pnl waveforms: Evidence for a thick upper mantle lid beneath southern Tibet. J. Geophys. Res. 95, 12499–12525 (1990).

    Article  ADS  Google Scholar 

  27. Jin, Y., McNutt, M. K. & Zhu, Y. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J. Geophys. Res. 101, 11275–11290 (1996).

    Article  ADS  Google Scholar 

  28. Butler, R. W. H. Thrust tectonics, deep structure, and crustal subduction in the Alps and Himalayas. J. Geol. Soc. Lond. 143, 857–873 (1986).

    Article  Google Scholar 

  29. Makovsley, Y. et al. Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics 15, 997–1005(1996).

    Article  ADS  Google Scholar 

  30. Yin, A., Murphy, M. A. & Harrison, T. M. Significant crustal shortening in the Lhasa block (southern Tibet) predates Indo-Asian collision. Geol. Soc. Am. Abstr Progm. 27, A-335 (1995).

  31. Zhao, W.-L. & Morgan, W. J. Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study. Tectonics 6, 489–504 (1987).

    Article  ADS  Google Scholar 

  32. Herquel, G., Wittlinger, G. & Guilbert, J. Anisotropy and crustal thickness of Northern-Tibet. New constraints for tectonic modeling. Geophys. Res. Lett. 22, 1925–1928(1995).

    Article  ADS  Google Scholar 

  33. Brown, L. D. et al. Bright spots, structure and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274, 1688–1690 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Makovsky, Y. et al. INDEPTH Wide-angle reflection observation of P-wave to S-wave conversion from crustal bright spots in Tibet. Science 274, 1690–1691 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Kind, R. et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science 274, 1692–1694(1996).

    Article  ADS  CAS  Google Scholar 

  36. Chen, L. et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science 274, 1694–1696 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Francheteau, J. et al. High heat flow in southern Tibet. Nature 307, 32–36 (1984).

    Article  ADS  Google Scholar 

  38. Jin, Y., McNutt, M. K. & Zhu, Y. Evidence from gravity and topography for folding of Tibet. Nature 371, 669–674(1994).

    Article  ADS  Google Scholar 

  39. England, P. C. Thompson, A. in Collision Tectonics (eds Coward, M. P. & Ries, A.C.) 83–94(Spec. Publ. 19, Geol. Soc. Lond., 1986).

  40. McNamara, D. E., Walter, W. R., Owens, T. J. & Ammon, C. J. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res. 102, 493–505 (1997).

    Article  ADS  CAS  Google Scholar 

  41. Turner, S. et al. Timing of the Tibetan uplift constrained by analysis of volcanic rocks. Nature 364, 50–54 (1993).

    Article  ADS  CAS  Google Scholar 

  42. Zhang, S. & Karato, S. Lattice preferred orientation of olivene aggregates deformed in simple shear. Nature 375, 774–777 (1995).

    Article  ADS  CAS  Google Scholar 

  43. Bird, P. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res. 96, 10275–10286 (1991).

    Article  ADS  Google Scholar 

  44. Tapponier, P., Peltzer, G. & Armjo, R. in Collision Tectonics (eds Coward, M. P. & Ries, A.C.) 115–157 (Spec. Publ. 19, Geol. Soc. Lond., 1986).

  45. Leeder, M. R., Smith, A. B. & Yin,J. Sedimentology, paleoecology and paleoenvironmental evolution fo the 1985 Lhasa to Golmud Geotraverse. Phil. Trans. R. Soc. Lond. A 327, 107–143 (1988).

    Article  ADS  Google Scholar 

  46. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 1992).

    Article  ADS  CAS  Google Scholar 

  47. Molnar, P. & Lyon-Caen, H. Some Simple Physical Aspects of Mountain Building 179–207 (Spec. Pap. 218, Geol. Soc. Am., Boulder, CO, 1988).

  48. Yin, A. et al. Tertiary structural evolution of the Gangdese thrust system in southeastern Tibet. J. Geophys. Res. 99, 18175–18201 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, T., Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997). https://doi.org/10.1038/387037a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387037a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing