Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors

Abstract

In the developing nervous system, migrating cells and axons are guided to their targets by cues in the extracellular environment. The netrins are a family of phylogenetically conserved guidance cues that can function as diffusible attractants and repellents for different classes of cells and axons1–10. In vertebrates, insects and nematodes, members of the DCC subfamily of the immunoglobulin superfamily have been implicated as receptors that are involved in migration towards netrin sources6,11–13,15. The mechanisms that direct migration away from netrin sources (presumed repulsions) are less well understood. In Caenorhabditis elegans, the transmembrane protein UNC-5 (ref. 14) has been implicated in these responses, as loss of unc-5 function causes migration defects16,17 and ectopic expression of unc-5 in some neurons can redirect their axons away from a netrin source18. Whether UNC-5 is a netrin receptor or simply an accessory to such a receptor has not, however, been defined. We now report the identification of two vertebrate homologues of UNC-5 which, with UNC-5 and the product of the mouse rostral cerebellar malformation gene (rcm)19, define a new subfamily of the immunoglobulin superfamily, and whose messenger RNAs show prominent expression in various classes of differentiating neurons. We provide evidence that these two UNC-5 homologues, as well as the rcm gene product, are netrin-binding proteins, supporting the hypothesis that UNC-5 and its relatives are netrin receptors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin related protein, guides cells and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    CAS  Article  Google Scholar 

  2. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    CAS  Article  Google Scholar 

  3. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    CAS  Article  Google Scholar 

  4. Colamarino, S. A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    CAS  Article  Google Scholar 

  5. Shirasaki, R., Tamada, A., Katsumata, R. & Murakami, F. Guidance of cerebellofugal axons in the rat embryo: directed growth toward the floor plate and subsequent elongation along the longitudinal axis. Neuron 14, 961–972 (1995).

    CAS  Article  Google Scholar 

  6. Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    CAS  Article  Google Scholar 

  7. Mitchell, K. J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996).

    CAS  Article  Google Scholar 

  8. Harris, R., Sabatelli, L. M. & Seeger, M. A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron 17, 217–228 (1996).

    CAS  Article  Google Scholar 

  9. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  Article  Google Scholar 

  10. Shirasaki, R., Mirzayan, C., Tessier-Lavigne, M. & Murakami, F. Guidance of circumferentially growing axons by netrin-dependent and -independent floor plate chemotropism in the vertebrate brain. Neuron 17, 1079–1088 (1996).

    CAS  Article  Google Scholar 

  11. Chan, S. S.-Y. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    CAS  Article  Google Scholar 

  12. Kolodziej, P. A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    CAS  Article  Google Scholar 

  13. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    CAS  Article  Google Scholar 

  14. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    CAS  Article  Google Scholar 

  15. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in Colorectal Cancer (DCC) gene. Nature 386, 796–804 (1997).

    ADS  CAS  Article  Google Scholar 

  16. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6 and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 2, 61–85 (1990).

    Article  Google Scholar 

  17. Mclntire, S. L., Garriga, G., White, J., Jacobson, D. & Horvitz, H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8, 307–322 (1992).

    Article  Google Scholar 

  18. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    ADS  CAS  Article  Google Scholar 

  19. Ackerman, S.L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5 like protein. Nature 386, 838–842 (1997).

    ADS  CAS  Article  Google Scholar 

  20. Willott, E. et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc. Natl Acad. Sci. USA 90, 7834–7838 (1993).

    ADS  CAS  Article  Google Scholar 

  21. Itoh, M. et al. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121, 491–502 (1993).

    CAS  Article  Google Scholar 

  22. Sheng. M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578 (1996).

    CAS  Article  Google Scholar 

  23. Altman, J. & Bayer, S. A. The development of the rat spinal cord. Adv. Anat. Embryol. Cell Biol. 85, 1–166 (1984).

    CAS  Article  Google Scholar 

  24. Ramón y Cajal, S. Histologie du Systéme Nerveux de l'Homme at des Vertébrés Vol. 2 (Maloine, Paris, 1911).

    Google Scholar 

  25. Rakic, P. Neuron–glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacua rhesus. J. Comp. Neurol 141, 283–312 (1971).

    CAS  Article  Google Scholar 

  26. Klar, A., Baldassare, M. & Jessell T. M. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 69, 95–110 (1992).

    CAS  Article  Google Scholar 

  27. Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    CAS  Article  Google Scholar 

  28. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of ncuronal growth cones. Cell 75, 217–227 (1993).

    CAS  Article  Google Scholar 

  29. Guthrie, S. & Pini, A. Chemorepulsion of developing motor axons by the floor plate. Neuron 14, 1117–1130 (1995).

    CAS  Article  Google Scholar 

  30. Varela-Echavarria, A., Tucker, A., Puschel, A. & Guthrie, S. Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18, 193–207 (1997).

    CAS  Article  Google Scholar 

  31. Livesey. F.J. & Hunt, S. P. Netrin and netrin receptor expression in the embryonic mammalian nervous system suggests role in retinal, striatal, nigral and cerebellar development. Mol. Cell. Neurosci. (in the press). UPDATE?

  32. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leonardo, E., Hinck, L., Masu, M. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997). https://doi.org/10.1038/386833a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386833a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing