Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleocytoplasmic transport: signals, mechanisms and regulation

Abstract

In eukaryotic organisms, DNA replication and RNA biogenesis occur in the cell nucleus, whereas protein synthesis occurs in the cytoplasm. Integration of these activities depends on selective transport of proteins and ribonucleoprotein particles between the two compartments. Transport across the nuclear envelope occurs through large multiprotein structures, termed nuclear pore complexes. It is signal-mediated and requires both energy and soluble factors, including shuttling carriers. Here I summarize current understanding of nucleocytoplasmic transport and illustrate the importance of regulated transport for signal transduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gerace, L. Nuclear export signals and the fast track to the cytoplasm. Cell 82, 341–344 (1995).

    CAS  PubMed  Google Scholar 

  2. Goldberg, M. W. & Alien, T. D. Structural and functional organization of the nuclear envelope. Curr. Opin. Cell Biol. 7, 301–309 (1995).

    CAS  PubMed  Google Scholar 

  3. Görlich, D. & Mattaj, I. W. Nucleocytoplasmic transport. Science 271, 1513–1518 (1996).

    ADS  PubMed  Google Scholar 

  4. Izaurralde, E. & Mattaj, I. W. RNA export. Cell 81, 153–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Panté, N. & Aebi, U. Exploring nuclear pore complex structure and function in molecular detail. J. Cell Sci. (suppl.) 19, 1–11 (1995).

    Google Scholar 

  6. Nigg, E. A. Mechanisms of signal transduction to the cell nucleus. Adv. Cancer Res. 55, 271–310 (1990).

    CAS  PubMed  Google Scholar 

  7. Karin, M. & Hunter, T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5, 747–757 (1995).

    CAS  PubMed  Google Scholar 

  8. Borer, R. A., Lehner, C. F., Eppenberger, H. M. & Nigg, E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56, 379–390 (1989).

    CAS  PubMed  Google Scholar 

  9. Schmidt-Zachmann, M. S., Dargemont, C., Kuhn, L. C. & Nigg, E. A. Nuclear export of proteins: the role of nuclear retention. Cell 74, 493–504 (1993).

    CAS  PubMed  Google Scholar 

  10. Pinol-Roma, S. & Dreyfuss, G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355, 730–732 (1992).

    ADS  CAS  PubMed  Google Scholar 

  11. Meyer, B. E. & Malim, M. H. The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 8, 1538–1547 (1994).

    CAS  PubMed  Google Scholar 

  12. Kalland, K. H., Szilvay, A. M., Brokstad, K. A., Saetrevik, W. & Haukenes, G. The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments. Mol. Cell. Biol. 14, 7436–7444 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakielny, S., Fischer, U., Michael, W. M. & Dreyfuss, G. RNA transport. Annu. Rev. Neurosci. 20, 269–298 (1997).

    CAS  PubMed  Google Scholar 

  14. Bukrinsky, M. I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669 (1993).

    ADS  CAS  PubMed  Google Scholar 

  15. Powers, M. A. & Forbes, D. J. Cytosolic factors in nuclear transport: what's importin? Cell 79, 931–934 (1994).

    CAS  PubMed  Google Scholar 

  16. Koepp, D. M. & Silver, P. A. A GTPase controlling nuclear trafficking: running the right way or walking RANdomly? Cell 97, 1–4 (1996).

    Google Scholar 

  17. Feldherr, C. M. & Akin, D. EM visualization of nucleocytoplasmic transport processes. Electron Microsc. Rev. 3, 73–86 (1990).

    CAS  PubMed  Google Scholar 

  18. Davis, L. I. The nuclear pore complex. Annu. Rev. Biochem. 64, 865–896 (1995).

    CAS  PubMed  Google Scholar 

  19. Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell 69, 1133–1141 (1992).

    CAS  PubMed  Google Scholar 

  20. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993).

    CAS  PubMed  Google Scholar 

  21. Bastos, R., Panté, N. & Burke, B. Nuclear pore complex proteins. Int. Rev. Cytol. 162B, 257–302 (1995).

    CAS  PubMed  Google Scholar 

  22. Rout, M. P. & Blobel, G. Isolation of the yeast nuclear pore complex. J. Cell Biol. 123, 771–783 (1993).

    CAS  PubMed  Google Scholar 

  23. Doye, V. & Hurt, E. C. Genetic approaches to nuclear pore structure and function. Trends. Genet. 11, 235–241 (1995).

    CAS  PubMed  Google Scholar 

  24. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).

    CAS  PubMed  Google Scholar 

  25. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    CAS  PubMed  Google Scholar 

  26. lovine, M. K., Watkins, J. L. & Wente, S. R. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J. Cell Biol. 131, 1699–1713 (1995).

    Google Scholar 

  27. Stutz, F., Izaurralde, E., Mattaj, I. W. & Rosbash, M. A role for nucleoporin FG repeat domains in export of human immunodeficiency virus type I Rev protein and RNA from the nucleus. Mol. Cell. Biol. 16, 7144–7150 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buss, F. & Stewart, M. Macromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62. J. Cell Biol. 128, 251–261 (1995).

    CAS  PubMed  Google Scholar 

  29. Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol. 130, 1263–1273 (1995).

    CAS  PubMed  Google Scholar 

  30. Grandi, P., Schlaich, N., Tekotte, H. & Hurt, E. C. Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J. 14, 76–87 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, T., Guan, T. & Gerace, L. Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J. Cell Biol. 134, 589–601 (1996).

    CAS  PubMed  Google Scholar 

  32. Sukegawa, J. & Blobel, G. A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72, 29–38 (1993).

    CAS  PubMed  Google Scholar 

  33. Panté, N., Bastos, R., McMorrow, I., Burke, B. & Aebi, U. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol. 126, 603–617 (1994).

    PubMed  Google Scholar 

  34. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).

    CAS  PubMed  Google Scholar 

  35. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    ADS  CAS  PubMed  Google Scholar 

  36. Fabre, E., Boelens, W. C., Wimmer, C., Mattaj, I. W. & Hurt, E. C. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78, 275–289 (1994).

    CAS  PubMed  Google Scholar 

  37. Kraemer, D., Wozniak, R. W., Blobel, G. & Radu, A. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl Acad. Sci. USA 91, 1519–1523 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borrow, J. et al. The t(7;ll)(p15;pl5) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nature Genet. 12, 159–167 (1996).

    CAS  PubMed  Google Scholar 

  39. Byrd, D. A. et al. Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J. Cell Biol. 127, 1515–1526 (1994).

    CAS  PubMed  Google Scholar 

  40. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences-a consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    CAS  PubMed  Google Scholar 

  41. Makkerh, J. P. S., Dingwall, C. & Laskey, R. A. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027 (1996).

    CAS  PubMed  Google Scholar 

  42. Breeuwer, M. & Goldfarb, D. S. Facilitated nuclear transport of histone H1 and other small nucleophilic proteins. Cell 60, 999–1008 (1990).

    CAS  PubMed  Google Scholar 

  43. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Lührmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483 (1995).

    CAS  PubMed  Google Scholar 

  44. Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).

    CAS  PubMed  Google Scholar 

  45. Siomi, H. & Dreyfuss, G. A nuclear localization domain in the hnRNP Al protein. J. Cell Biol. 129, 551–560 (1995).

    CAS  PubMed  Google Scholar 

  46. Michael, W. M., Choi, M. & Dreyfuss, G. A nuclear export signal in hnRNP Al: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83, 415–422 (1995).

    CAS  PubMed  Google Scholar 

  47. Weighardt, F., Biamonti, G. & Riva, S. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J. Cell Sci. 108, 545–555 (1995).

    CAS  PubMed  Google Scholar 

  48. Guddat, U., Bakken, A. H. & Pieler, T. Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in Xenopus oocytes. Cell 60, 619–628 (1990).

    CAS  PubMed  Google Scholar 

  49. Fridell, R. A. et al. Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev. Proc. Natl Acad. Sci. USA 93, 2936–2940 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bataillé, N., Helser, T. & Fried, H. M. Cytoplasmic transport of ribosomal subunits microinjected into the Xenopus laevis oocyte nucleus: a generalized, facilitated process. J. Cell Biol. 111, 1571–1582 (1990).

    PubMed  Google Scholar 

  51. Pokrywka, N. J. & Goldfarb, D. S. Nuclear export pathways of tRNA and 40 S ribosomes include both common and specific intermediates. J. Biol. Chem. 270, 3619–3624 (1995).

    CAS  PubMed  Google Scholar 

  52. Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    ADS  CAS  PubMed  Google Scholar 

  53. Melchior, R., Paschal, B., Evans, J. & Gerace, L. Inhibition of nuclear protein import by nonhy-drolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123, 1649–1659 (1993).

    CAS  PubMed  Google Scholar 

  54. Weis, K., Dingwall, C. & Lamond, A. I. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J. 15, 7120–7128 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sweet, D. J. & Gerace, L. A GTPase distinct from Ran is involved in nuclear protein import. J. Cell Biol. 133, 971–983 (1996).

    CAS  PubMed  Google Scholar 

  56. Coutavas, E., Ren, M., Oppenheim, J. D., D'Eustachio, P. & Rush, M. G. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587 (1993).

    ADS  CAS  PubMed  Google Scholar 

  57. Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBPl. EMBO J. 14, 705–715 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Melchior, F., Guan, T., Yokoyama, N., Nishimoto, T. & Gerace, L. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import. J. Cell Biol. 131, 571–581 (1995).

    CAS  PubMed  Google Scholar 

  59. Dingwall, C., Kandels Lewis, S. & Seraphin, B. A family of Ran binding proteins that includes nucleoporins. Proc. Natl Acad. Sci. USA 92, 7525–7529 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chi, N. C., Adam, E. J. H., Visser, G. D. & Adam, S. A. RanBP1 stabilizes the interaction of Ran with p97 in nuclear protein import. J. Cell Biol. 135, 559–569 (1996).

    CAS  PubMed  Google Scholar 

  61. Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    PubMed  PubMed Central  Google Scholar 

  62. Tachibana, T., Imamoto, N., Seino, H., Nishimoto, T. & Yoneda, Y. Loss of RCC1 leads to suppression of nuclear protein import in living cells. J. Biol. Chem. 269, 24542–24545 (1994).

    CAS  PubMed  Google Scholar 

  63. Corbett, A. H. et al. Rnalp, a Ran/TC4 GTPase activating protein, is required for nuclear import. J. Cell Biol. 130, 1017–1026 (1995).

    CAS  PubMed  Google Scholar 

  64. Amberg, D. C., Fleischmann, M., Stagljar, I., Cole, C. N. & Aebi, M. Nuclear PRP20 protein is required for mRNA export. EMBO J. 12, 233–241 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kadowaki, T., Goldfarb, D., Spitz, L. M., Tartakoff, A. M. & Ohno, M. Regulation of RNA processing and transport by a nuclear guanine nucleotide release protein and members of the Ras superfamily. EMBO J. 12, 2929–2937 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schlenstedt, G., Wong, D. H., Koepp, D. M. & Silver, P. A. Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J. 14, 5367–5378 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Koepp, D. M., Wong, D. H., Corbett, A. H. & Silver, P. A. Dynamic localization of the nuclear import receptor and its interactions with transport factors. J. Cell Biol. 133, 1163–1176 (1996).

    CAS  PubMed  Google Scholar 

  68. Moroianu, J. & Blobel, G. Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc. Natl Acad. Sci. USA 92, 4318–4322 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng, Y., Dahlberg, J. E. & Lund, E. Diverse effects of the guanine nucleotide exchange factor RCC1 on RNA transport. Science 267, 1807–1810 (1995).

    ADS  CAS  PubMed  Google Scholar 

  70. Newmeyer, D. D., Finlay, D. R. & Forbes, D. J. In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins. J. Cell Biol. 103, 2091–2102 (1986).

    CAS  PubMed  Google Scholar 

  71. Adam, S. A., Marr, R. S. & Gerace, L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).

    CAS  PubMed  Google Scholar 

  72. Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    PubMed  Google Scholar 

  73. Görlich, D., Vogel, F., Mills, A. D., Hartmann, E. & Laskey, R. A. Distinct functions for the two importin subunits in nuclear protein import. Nature 377, 246–248 (1995).

    ADS  PubMed  Google Scholar 

  74. Radu, A., Blobel, G. & Moore, M. S. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc. Natl Acad. Sci. USA 92, 1769–1773 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Imamoto, N. et al. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J. 14, 3617–3626 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Imamoto, N., Tachibana, T., Matsubae, M. & Yoneda, Y. A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J. Biol. Chem. 270, 8559–8565 (1995).

    CAS  PubMed  Google Scholar 

  77. Görlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392 (1995).

    PubMed  Google Scholar 

  78. Weis, K., Mattaj, I. W. & Lamond, A. I. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 268, 1049–1053 (1995).

    ADS  CAS  PubMed  Google Scholar 

  79. Chi, N. C., Adam, E. J. & Adam, S. A. Sequence and characterization of cytoplasmic nuclear protein import factor p97. J. Cell Biol. 130, 265–274 (1995).

    CAS  PubMed  Google Scholar 

  80. Panté, N. & Aebi, U. Sequential binding of import ligands to distinct nucleopore regions during their nuclear import. Science 273, 1729–1732 (1996).

    ADS  PubMed  Google Scholar 

  81. Pollard, V. W. et al. A novel receptor-mediated nuclear protein import pathway. Cell 86, 985–994 (1996).

    CAS  PubMed  Google Scholar 

  82. Aitchison, J. D., Blobel, G. & Rout, M. P. Kap 104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274, 624–627 (1996).

    ADS  CAS  PubMed  Google Scholar 

  83. Enenkel, C., Blobel, G. & Rexach, M. Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J. Biol. Chem. 270, 16499–16502 (1995).

    CAS  PubMed  Google Scholar 

  84. Weis, K., Ryder, U. & Lamond, A. I. The conserved amino-terminal domain of hSRPl alpha is essential for nuclear protein import. EMBO J. 15, 1818–1825 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Torok, I. et al. The overgrown hematopoietic organs-31 tumor suppressor gene of Drosophila encodes an importin-like protein accumulating in the nucleus at the onset of mitosis. J. Cell Biol. 129, 1473–1489 (1995).

    CAS  PubMed  Google Scholar 

  86. Küssel, P. & Frasch, M. Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation. J. Cell Biol. 129, 1491–1507 (1995).

    PubMed  Google Scholar 

  87. Moore, M. S. & Blobel, G. Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc. Natl Acad. Sci. USA 91, 10212–10216 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paschal, B. M. & Gerace, L. Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J. Cell Biol. 129, 925–937 (1995).

    CAS  PubMed  Google Scholar 

  89. Corbett, A. H. & Silver, P. A. The NTF2 gene encodes an essential, highly conserved protein that functions in nuclear transport in vivo. J. Biol. Chem. 271, 18477–18484 (1996).

    CAS  PubMed  Google Scholar 

  90. Paschal, B. M., Delphin, C. & Gerace, L. Nucleotide-specific interaction of Ran/TC4 with nuclear transport factors NTF2 and p97. Proc. Natl Acad. Sci. USA 93, 7679–7683 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nehrbass, U. & Blobel, G. Role of the nuclear transport factor p10 in nuclear import. Science 272, 120–122 (1996).

    ADS  CAS  PubMed  Google Scholar 

  92. Lounsbury, K. M., Richards, S. A., Perlungher, R. R. & Macara, I. G. Ran binding domains promote the interaction of Ran with p97/beta-karyopherin, linking the docking and translocation steps of nuclear import. J. Biol. Chem. 271, 2357–2360 (1996).

    CAS  PubMed  Google Scholar 

  93. Panté, N. & Aebi, U. Toward the molecular dissection of protein import into nuclei. Curr. Opin. Cell Biol. 8, 397–406 (1996).

    PubMed  Google Scholar 

  94. Simon, S. M., Peskin, C. S. & Oster, G. F. What drives the translocation of proteins? Proc. Natl Acad. Sci. USA 89, 3770–3774 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moroianu, J., Blobel, G. & Radu, A. Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proc. Natl Acad. Sci. USA 93, 7059–7062 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moroianu, J., Hijikata, M., Blobel, G. & Radu, A. Mammalian kdryopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc. Natl Acad. Sci. USA 92, 6532–6536 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Azuma, Y., Tabb, M. M., Yu, L. & Nomura, M. Isolation of a yeast protein kinase that is activated by the protein encoded by SRP1 (Srplp) and phosphorylates Srplp complexed with nuclear localization signal peptides. Proc. Natl Acad. Sci. USA 92, 5159–5163 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    PubMed  PubMed Central  Google Scholar 

  99. Marshallsay, C. & Lührmann, R. In vitro nuclear import of snRNPs: cytosolic factors mediate m3G-cap dependence of Ul and U2 snRNP transport. EMBO J. 13, 222–231 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Michaud, N. & Goldfarb, D. S. Multiple pathways in nuclear transport: the import of U2 snRNP occurs by a novel kinetic pathway. J. Cell Biol. 112, 215–223 (1991).

    CAS  PubMed  Google Scholar 

  101. Palacios, I., Weis, K., Klebe, C., Mattaj, I. W. & Dingwall, C. RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol. 133, 485–494 (1996).

    CAS  PubMed  Google Scholar 

  102. Dreyfuss, G., Matunis, M. J., Pinol-Roma, S. & Burd, C. G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    CAS  PubMed  Google Scholar 

  103. Lee, M. S., Henry, M. & Silver, P. A. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 10, 1233–1246 (1996).

    CAS  PubMed  Google Scholar 

  104. Mehlin, H., Daneholt, B. & Skoglund, U. Structural interaction between the nuclear pore complex and a specific translocating RNP particle. J. Cll Biol. 129, 1205–1216 (1995).

    CAS  Google Scholar 

  105. Visa, N., Izaurralde, E., Ferreira, J., Daneholt, B. & Mattaj, I. W. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cell Biol. 133, 5–14 (1996).

    CAS  PubMed  Google Scholar 

  106. Visa, N. et al. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84, 253–264 (1996).

    CAS  PubMed  Google Scholar 

  107. Zasloff, M. tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process. Proc. Natl Acad. Sci. USA 80, 6436–6440 (1983).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jarmolowski, A. Boelens, W. C., Izaurralde, E. & Mattaj, I. W. Nuclear export of different classes of RNA is mediated by specific factors. J. Cell Biol. 124, 627–635 (1994).

    CAS  PubMed  Google Scholar 

  109. Amberg, D. C., Goldstein, A. L. & Cole, C. N. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189 (1992).

    CAS  PubMed  Google Scholar 

  110. Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126, 649–659 (1994).

    CAS  PubMed  Google Scholar 

  111. Fischer, U. et al. Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13, 4105–4112 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bogerd, H. P., Fridell, R. A., Benson, R. E. & Cullen, B. R. Protein sequence requirements for function of the human T-cell leukemia virus type I Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fritz, C. C. & Green, M. R. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6, 848–854 (1996).

    CAS  PubMed  Google Scholar 

  114. Fridell, R. A., Bogerd, H. P. & Cullen, B. R. Nuclear export of late HIV-1 mRNAs occurs via a cellular protein export pathway. Proc. Natl Acad. Sci. USA 93, 4421–4424 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fritz, C. C., Zapp, M. L. & Green, M. R. A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376, 530–533 (1995).

    ADS  CAS  PubMed  Google Scholar 

  116. Bogerd, H. P., Fridell, R. A., Madore, S. & Cullen, B. R. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82, 485–494 (1995).

    CAS  PubMed  Google Scholar 

  117. Stutz, E., Neville, M. & Rosbash, M. Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82, 495–506 (1995).

    CAS  PubMed  Google Scholar 

  118. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).

    ADS  CAS  PubMed  Google Scholar 

  119. Singleton, D. R., Chen, S., Hitomi, M., Kumagai, C. & Tartakoff, A. M. A yeast protein that bidirectionally affects nucleocytoplasmic transport. J. Cell Sci. 108, 265–272 (1995).

    CAS  PubMed  Google Scholar 

  120. Izaurralde, E., Stepinski, J., Darzynkiewicz, E. & Mattaj, I. W. A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs. J. Cell Biol. 118, 1287–1295 (1992).

    CAS  PubMed  Google Scholar 

  121. Terns, M. P., Dahlberg, J. E. & Lund, E. Multiple cis-acting signals for export of pre-Ul snRNA from the nucleus. Genes. Dev. 7, 1898–1908 (1993).

    CAS  PubMed  Google Scholar 

  122. Izaurralde, E. et al. A cap-binding protein complex mediating UsnRNA export. Nature 376, 709–712 (1995).

    ADS  CAS  PubMed  Google Scholar 

  123. Saavedra, C., Tung, K. S., Amberg, D. C., Hopper, A. K. & Cole, C. N. Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev. 10, 1608–1620 (1996).

    CAS  PubMed  Google Scholar 

  124. Görlich, D. et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32 (1996).

    PubMed  Google Scholar 

  125. Feldherr, C. M. & Akin, D. Role of nuclear trafficking in regulating cellular activity. Int. Rev. Cytol. 151, 183–228 (1994).

    CAS  PubMed  Google Scholar 

  126. Wang, X., Sato, R., Brown, M. S., Hua, X. & Goldstein, J. L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77, 53–62 (1994).

    CAS  PubMed  Google Scholar 

  127. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SW15. Cell 66, 743–758 (1991).

    CAS  PubMed  Google Scholar 

  128. Arenzana-Seisdedos, F. et al. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol. Cell. Biol. 15, 2689–2696 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Guiochon-Mantel, A. et al. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 10, 3851–3859 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dingwall, C., Sharnick, S. V. & Laskey, R. A. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30, 449–458 (1982).

    CAS  PubMed  Google Scholar 

  131. Adam, S. A. & Gerace, L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 66, 837–847 (1991).

    CAS  PubMed  Google Scholar 

  132. Moor, M. S. & Blobel, G. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell 69, 939–950 (1992).

    Google Scholar 

  133. Scheffzek, K., Klebe, C., Fritz Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    ADS  CAS  PubMed  Google Scholar 

  134. Bullock, T. L., Clarkson, W. D., Kent, H. M. & Stewart, M. The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J. Mol. Biol. 260, 422–431 (1996).

    CAS  PubMed  Google Scholar 

  135. Baeuerle, P. A. & Henkel, T. Function and activation of NFKB in the immune system. Annu. Rev. Immunol. 12, 540–546 (1994).

    Google Scholar 

  136. Jarnik, M. & Aebi, U. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107, 291–308 (1991).

    CAS  PubMed  Google Scholar 

  137. Panté, N. & Aebi, U. Toward the molecular details of the nuclear pore complex. J. Struct. Biol. 113, 179–189 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigg, E. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 (1997). https://doi.org/10.1038/386779a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386779a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing