Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis

Abstract

The Universe contains much more matter than antimatter, which is probably the result of processes in the early Universe in which baryon number was not conserved. These processes may have occurred during the electroweak phase transition, when elementary particles first acquired mass1–4. It is impossible to study directly processes relevant to the early Universe, because of the extreme energies involved. One is therefore forced to investigate laboratory systems with analogous phase transitions. Much of the behaviour of superfluid 3He is analogous to that predicted within the standard model of the electroweak interaction5. Superfluids and liquid crystals have already been used to investigate cosmic string production6–11; here we describe experiments on 3He that demonstrate the creation of excitation momentum (which we call momentogenesis) by quantized vortices in the superfluid. The underlying physics of this process is similar to that associated with the creation of baryons within cosmic strings, and our results provide quantitative support for this type of baryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dolgov, A. D. Nongut baryogenesis. Phys. Rep. 222, 309–386 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Turok, N. in Formation and Interaction of Topological Defects (eds Davis, A. C. & Brandenberger, R.) 283–301 (Plenum, New York, 1995).

    Book  Google Scholar 

  3. Vilenkin, A. & Shellard, E. P. S. Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994).

    MATH  Google Scholar 

  4. Hindmarsh, M. B. & Kibble, T. W. B. Cosmic Strings. Rep. Prog. Phys. 58, 477–562 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. Volovik, G. E. & Vachaspati, T. Aspects of 3He and the standard electroweak model. Int. J. Mod. Phys. B 10, 471–521 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Zurek, W. H. Cosmological experiments in superfluid helium. Nature 317, 505–508 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251, 1336–1342 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Bowick, M. J., Chander, L., Schiff, E. A. & Srivastava, A. M. The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals. Science 263, 943–945 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Hendry, P. C., Lawson, N. S., Lee, R. A. M., McClintock, P. V. E. & Williams, C. D. H. Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368, 315–317 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Ruutu, V. M. H. et al. Vortex formation in neutron irradiated 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Bäuerle, C., Bunkov, Yu. M., Fisher, S. N., Godfrin, H. & Pickett, G. R. Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He. Nature 382, 332–334 (1996).

    Article  ADS  Google Scholar 

  12. Adler, S. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  ADS  Google Scholar 

  13. Bell, J. S. & Jackiw, R. A PCAC puzzle: π()→γγ in the σ-model. Nuovo Cim. Ser. 10 60A, 47–61 (1969).

    Article  Google Scholar 

  14. Caroli, C., de Gennes, P. G. & Matricon, J. Bound fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).

    Article  ADS  Google Scholar 

  15. Witten, E. Superconducting strings. Nucl. Phys. B 249, 557–592 (1985).

    Article  ADS  Google Scholar 

  16. Vachaspati, T., Field, G. B. Electroweak string configurations with baryon number. Phys. Rev. Lett. 73, 373–376 (1994); 74, 1258(E) (1995).

    Article  ADS  CAS  Google Scholar 

  17. Garriga, J. & Vachaspati, T. Zero modes on linked strings. Nucl. Phys. B 438, 161–181 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  18. Barriola, M. Electroweak strings produce baryons. Phys. Rev. D 51, 300–304 (1995).

    Article  ADS  Google Scholar 

  19. Starkman, G. D. & Vachaspati, T. Galactic cosmic strings as sources of primary antiprotons. Phys. Rev. D 53, 6711–6714 (1996).

    Article  ADS  Google Scholar 

  20. Sakharov, A. Violation of CP invariance, Casymmetry, and baryon asymmetry of the Universe. Pis’ma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967); JETP Lett. 5, 24–27 (1967).

    CAS  Google Scholar 

  21. Kopnin, N. B., Volovik, G. E. & Parts, Ü. Spectral flow in vortex dynamics of 3He-B and superconductors. Europhys. Lett. 32, 651–656 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Bevan, T. D. C. et al. Vortex mutual friction in rotating superfluid 3He-B. Phys. Rev. Lett. 74, 750–753 (1995); 74, 3092(E) (1995).

    Article  ADS  CAS  Google Scholar 

  23. Manninen, A. J. et al. Vortex mutual friction, orbital inertia and history dependent textures in rotating superfluid 3He-A. Phys. Rev. Lett. 77, 5086–5089 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Stone, M. Spectral flow, Magnus force and mutual friction via the geometric optics limit of Andreev reflection. Phys. Rev. B 54, 13222–13229 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Parts, Ü et al. Phase diagram of vortices in superfluid 3He-A. Phys. Rev. Lett. 75, 3320–3323 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevan, T., Manninen, A., Cook, J. et al. Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis. Nature 386, 689–692 (1997). https://doi.org/10.1038/386689a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386689a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing