More hippocampal neurons in adult mice living in an enriched environment


Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent1–4, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Altman, J. & Das, G. D. Autoradiographic and histologic evidence of postnatal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    CAS  Article  Google Scholar 

  2. 2

    Kaplan, M. S. & Hinds, J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 (1977).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Cameron, H. A. et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56, 337–344 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Kuhn, H. G. et al. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Rosenzweig, M. R. et al. Effects of environmental complexity and training on brain chemistry and anatomy. J. Comp. Physiol Psychol. 55, 429–437 (1962).

    CAS  Article  Google Scholar 

  6. 6

    Altman, J. & Das, G. D. Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature 204, 1161–1163 (1964).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cummins, R. A. et al. Environmentally induced changes in the brains of elderly rats. Nature 243, 516–518 (1973).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Greenough, W. T. Experiential modificaiton of the developing brain. Am. Sci. 63, 37–46 (1975).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Meaney, M. J. et al. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768 (1988).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Rosenzweig, M. R. et al. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 153, 563–576 (1978).

    Google Scholar 

  11. 11

    Rosenzweig, M. R. Environmental complexity, cerebral change, and behavior. Am. Psychol. 21, 321–332 (1966).

    CAS  Article  Google Scholar 

  12. 12

    Walsh, R. N. et al. The effects of environmental complexity on the histology of the rat hippocampus. J. Comp. Neurol. 137, 361–366 (1969).

    CAS  Article  Google Scholar 

  13. 13

    Fiala, B. A. et al. Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Exp. Neurol. 59, 372–383 (1978).

    CAS  Article  Google Scholar 

  14. 14

    Cummins, R. A. et al. A developmental theory of environmental enrichment. Science 197, 692–694 (1977).

    ADS  CAS  Article  Google Scholar 

  15. 15

    del Rio, J. A. & Soriano, E. Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Dev. Brain Res. 49, 311–317 (1989).

    CAS  Article  Google Scholar 

  16. 16

    Sloviter, R. S. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280, 183–196 (1989).

    CAS  Article  Google Scholar 

  17. 17

    Walsh, R. N. & Cummins, R. A. Changes in hippocampal neuronal nuclei in response to environmental stimulation. Int. J. Neurosci. 9, 209–212 (1979).

    CAS  Article  Google Scholar 

  18. 18

    Wimer, R. E. et al. The genetic organization of neuron number in the granule cell layer of the area dentata in house mice. Brain Res. 157, 105–122 (1978).

    CAS  Article  Google Scholar 

  19. 19

    Cameron, H. A. et al. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 15, 4687–4692 (1995).

    CAS  Article  Google Scholar 

  20. 20

    McEwen, B. S. Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors. Cell. Mol. Neurobiol. 16, 103–116 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Reynolds, B. A. et al. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Palmer, T. D. et al. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Wainwright, P. E. et al. The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav. Brain Res. 60, 125–136 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Pacteau, C. et al. Early rearing environment and dorsal hippocampal ibotenic acid lesions: long-term influences on spatial learning and alternation in the rat. Behav. Brain Res. 34, 79–96 (1989).

    CAS  Article  Google Scholar 

  26. 26

    Gundersen, H. J. et al. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol. Microbiol. Immunol. Scand. 96, 857–881 (1988).

    CAS  Article  Google Scholar 

  27. 27

    West, M. J. New sterological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Coggeshall, R. E. & Lekan, H. A. Methods for determining numbers of cells and synapses: a case for more uniform standards for review. J. Comp. Neurol. 364, 6–15 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kempermann, G., Kuhn, H. & Gage, F. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.