Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

More hippocampal neurons in adult mice living in an enriched environment

Abstract

Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent1–4, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Altman, J. & Das, G. D. Autoradiographic and histologic evidence of postnatal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  Google Scholar 

  2. Kaplan, M. S. & Hinds, J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Cameron, H. A. et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56, 337–344 (1993).

    Article  CAS  Google Scholar 

  4. Kuhn, H. G. et al. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  Google Scholar 

  5. Rosenzweig, M. R. et al. Effects of environmental complexity and training on brain chemistry and anatomy. J. Comp. Physiol Psychol. 55, 429–437 (1962).

    Article  CAS  Google Scholar 

  6. Altman, J. & Das, G. D. Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature 204, 1161–1163 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Cummins, R. A. et al. Environmentally induced changes in the brains of elderly rats. Nature 243, 516–518 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Greenough, W. T. Experiential modificaiton of the developing brain. Am. Sci. 63, 37–46 (1975).

    ADS  CAS  PubMed  Google Scholar 

  9. Meaney, M. J. et al. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Rosenzweig, M. R. et al. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 153, 563–576 (1978).

    Google Scholar 

  11. Rosenzweig, M. R. Environmental complexity, cerebral change, and behavior. Am. Psychol. 21, 321–332 (1966).

    Article  CAS  Google Scholar 

  12. Walsh, R. N. et al. The effects of environmental complexity on the histology of the rat hippocampus. J. Comp. Neurol. 137, 361–366 (1969).

    Article  CAS  Google Scholar 

  13. Fiala, B. A. et al. Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Exp. Neurol. 59, 372–383 (1978).

    Article  CAS  Google Scholar 

  14. Cummins, R. A. et al. A developmental theory of environmental enrichment. Science 197, 692–694 (1977).

    Article  ADS  CAS  Google Scholar 

  15. del Rio, J. A. & Soriano, E. Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Dev. Brain Res. 49, 311–317 (1989).

    Article  CAS  Google Scholar 

  16. Sloviter, R. S. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280, 183–196 (1989).

    Article  CAS  Google Scholar 

  17. Walsh, R. N. & Cummins, R. A. Changes in hippocampal neuronal nuclei in response to environmental stimulation. Int. J. Neurosci. 9, 209–212 (1979).

    Article  CAS  Google Scholar 

  18. Wimer, R. E. et al. The genetic organization of neuron number in the granule cell layer of the area dentata in house mice. Brain Res. 157, 105–122 (1978).

    Article  CAS  Google Scholar 

  19. Cameron, H. A. et al. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 15, 4687–4692 (1995).

    Article  CAS  Google Scholar 

  20. McEwen, B. S. Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors. Cell. Mol. Neurobiol. 16, 103–116 (1996).

    Article  CAS  Google Scholar 

  21. Reynolds, B. A. et al. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  Google Scholar 

  22. Palmer, T. D. et al. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    Article  CAS  Google Scholar 

  23. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  Google Scholar 

  24. Wainwright, P. E. et al. The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav. Brain Res. 60, 125–136 (1994).

    Article  CAS  Google Scholar 

  25. Pacteau, C. et al. Early rearing environment and dorsal hippocampal ibotenic acid lesions: long-term influences on spatial learning and alternation in the rat. Behav. Brain Res. 34, 79–96 (1989).

    Article  CAS  Google Scholar 

  26. Gundersen, H. J. et al. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol. Microbiol. Immunol. Scand. 96, 857–881 (1988).

    Article  CAS  Google Scholar 

  27. West, M. J. New sterological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    Article  CAS  Google Scholar 

  28. Coggeshall, R. E. & Lekan, H. A. Methods for determining numbers of cells and synapses: a case for more uniform standards for review. J. Comp. Neurol. 364, 6–15 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kempermann, G., Kuhn, H. & Gage, F. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997). https://doi.org/10.1038/386493a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386493a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing