Abstract
The crystal structure of the 20S proteasome from the yeast Saccharomyces cerevisiae shows that its 28 protein subunits are arranged as an (α1...α7, β1...β7)2 complex in four stacked rings and occupy unique locations. The interior of the particle, which harbours the active sites, is only accessible by some very narrow side entrances. The β-type subunits are synthesized as proproteins before being proteolytically processed for assembly into the particle. The proforms of three of the seven different β-type subunits, (β1/PRE3, β2/PUP1 and β5/PRE2, are cleaved between the threonine at position 1 and the last glycine of the pro-sequence, with release of the active-site residue Thr 1. These three β-type subunits have inhibitor-binding sites, indicating that PRE2 has a chymotrypsin-like and a trypsin-like activity and that PRE3 has peptidylglutamyl peptide hydrolytic specificity. Other β-type subunits are processed to an intermediate form, indicating that an additional nonspecific endopeptidase activity may exist which is important for peptide hydrolysis and for the generation of ligands for class I molecules of the major histocompatibility complex.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores
Nature Communications Open Access 15 November 2022
-
Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types
BMC Cancer Open Access 19 September 2022
-
POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells
British Journal of Cancer Open Access 02 May 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Emori, Y. et al. Mol. Cell. Biol. 11, 344–353 (1991).
Rivett, A. J. Biochem. J. 291, 1–10 (1993).
Peters, J.-M. Trends Biochem. Sci. 19, 377–382 (1994).
Goldberg, A. L., Stein, R. & Adams, J. Chem. Biol. 2, 503–508 (1995).
Hochstrasser, M. Curr. Opin. Cell Biol. 7, 215–223 (1995).
Rubin, D. M. & Finley, D. Curr. Biol. 5, 854–858 (1995).
Lord, M. Curr. Biol. 6, 1067–1069 (1996).
Coux, O., Tanaka, K. & Goldberg, A. L. Annu. Rev. Biochem. 65, 801–847 (1996).
Stock, D. et al. Curr. Opin. Biotech. 7, 376–385 (1996).
Stock, D., Ditzel, L., Baumeister, W., Huber, R. & Löwe, J. Cold Spring Harbor Symp. Quant. Biol. LX, 525–532 (1995).
Chen, P. & Hochstrasser, M. EMBO J. 14, 2620–2630 (1995).
Groettrup, M., Soza, A., Kuckelkorn, U. & Kloetzel, P. M. Immunol. Today 17, 429–435 (1996).
Hilt, W. & Wolf, D. H. Trends Biochem. Sci. 21, 96–102 (1996).
Löwe, J. et al. Science 268, 533–539 (1995).
Seemüller, E. et al. Science 268, 579–582 (1995).
Brannigan, J. A. et al. Nature 378, 416–419 (1995).
Heinemeyer, W., Tröndle, N., Albrecht, G. & Wolf, D. H. Biochemistry 33, 12229–12237 (1994).
Ehring, B., Meyer, T. H., Eckerskorn, C., Lottspeich, F. & Tampé, R. Eur. J. Biochem. 235, 404–415 (1996).
Dick, L. R. et al. Immunology 152, 3884–3894 (1994).
Wenzel, T., Eckerskorn, C., Lottspeich, F. & Baumeister, W. FEBS Lett. 349, 205–209 (1994).
Kuckelkorn, U. et al. Eur. J. Immunol. 25, 2605–2611 (1995).
Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P.-M. J. Mol. Biol. 236, 975–981 (1994).
Cerundolo, V., Kelly, A., Elliott, T., Trowsdale, J. & Townsend, A. Eur. J. Immunol. 25, 554–562 (1995).
Seemüller, E., Lupas, A. & Baumeister, W. Nature 382, 468–470 (1996).
Chen, P. & Hochstrasser, M. Cell 86, 961–972 (1996).
Kopp, F. et al. J. Mol. Biol. 248, 264–272 (1995).
Gaczynska, M., Rock, K. L. & Goldberg, A. L. Nature 365, 264–267 (1993).
Driscoll, J., Brown, M. G., Finley, D. & Monaco, J. J. Nature 365, 262–264 (1993).
Fehling, H. J. et al. Science 265, 1234–1237 (1994).
Van Kaer, L. et al. Immunity 1, 533–541 (1994).
Duggleby, H. J. et al. Nature 373, 264–268 (1995).
Fenteany, G. et al. Science 268, 726–730 (1995).
Heinemeyer, W., Gruhler, A., Möhrle, V., Mahé, Y. & Wolf, D. H. J. Biol. Chem. 268, 5115–5120 (1993).
Hilt, W., Enenkel, C., Gruhler, A., Singer, T. & Wolf, D. H. J. Biol. Chem. 268, 3479–3486 (1993).
Schmidtke, G. et al. EMBO J. 15, 6887–6898 (1996).
Dick, L. R., Moomaw, R., DeMartino, G. N. & Slaughter, C. A. Biochemistry 30, 2725–2734 (1991).
Hoffman, L. & Rechsteiner, M. J. Biol. Chem. 269, 16890–16895 (1994).
Kania, M. A., DeMartino, G. N., Baumeister, W. & Goldberg, A. L. Eur. J. Biochem. 236, 510–516 (1996).
Gray, C. W., Slaughter, C. A. & DeMartino, G. N. J. Mol. Biol. 236, 7–15 (1994).
York, I. A. & Rock, K. L. Annu. Rev. Immunol. 14, 369–396 (1996).
Niedermann, G. et al. Proc. Natl Acad. Sci. USA 93, 8572–8577 (1996).
Rock, K. L. et al. Cell 78, 761–771 (1994).
Sibille, C. et al. Curr. Biol. 5, 923–930 (1995).
v. Engelhard, H. Curr. Opin. Immunol. 6, 13–23 (1994).
Stohwasser, R., Kuckelkorn, U., Kraft, R., Kostka, S. & Kloetzel, P.-M. FEBS Lett. 383, 109–113 (1996).
Madden, D. R., Gorga, J. C., Strominger, J. L. & Wiley, D. C. Nature 353, 321–325 (1991).
Achstatter, T., Ehmann, C., Osaki, A. & Wolf, D. H. J. Biol. Chem. 259, 13344–13348 (1994).
Leslie, A. G. W. Collaborative Computational Project No. 4. Acta Crystallogr. D 50, 760–763 (1994).
Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).
Turk, D. Thesis, Technische Univ., München (1992).
Brunger, A. X-PLOR Version 3.1. A System for X-Ray Crystallography and NMR (1992).
Jones, T. A. J. Appl. Cryst. 11, 268–272 (1978).
Engh, R. A. & Huber, R. Acta. Crystallogr. A 47, 392–400 (1991).
Kraulis, P. J. J. Appl. Crystallogr. 24, 946–950 (1991).
Nicholls, A., Bharadwaj, R. & Honig, B. Biophys. J. 64, A166 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Groll, M., Ditzel, L., Löwe, J. et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386, 463–471 (1997). https://doi.org/10.1038/386463a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/386463a0
This article is cited by
-
Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types
BMC Cancer (2022)
-
Yeast PI31 inhibits the proteasome by a direct multisite mechanism
Nature Structural & Molecular Biology (2022)
-
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores
Nature Communications (2022)
-
POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells
British Journal of Cancer (2022)
-
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria
Nature Chemistry (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.