Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maximal sustained energy budgets in humans and animals

Abstract

Why are sustained energy budgets of humans and other vertebrates limited to not more than about seven times resting metabolic rate? The answer to this question has potential applications to growth rates, foraging ecology, biogeography, plant metabolism, burn patients and sports medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Westerterp, K. R. et al. Use of the doubly labeled water technique in humans during heavy sustained exercise. J. Appl. Physiol. 61, 2162–2167 (1986).

    CAS  Article  Google Scholar 

  2. 2

    Petersen, C. C. et al. Sustained metabolic scope. Proc. Natl Acad. Sci. USA 87, 2324–2328 (1990).

    ADS  Article  Google Scholar 

  3. 3

    Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).

    Google Scholar 

  4. 4

    Weiner, J. Metabolic constraints to mammalian energy budgets. Acta Theriol. 34, 3–35 (1989).

    Article  Google Scholar 

  5. 5

    Taylor, C. R. & Weibel, E. R. Design of the mammalian respiratory system. I. Problems and strategy. Resp. Physiol 44, 1–10 (1981).

    CAS  Article  Google Scholar 

  6. 6

    Toloza, E. et al. Nutrient extraction by cold-exposed mice: a test of digestive safety margin. Am. J. Physiol. 261, G608–620 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Konarzewski, M. & Diamond, J. M. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physil. Zool. 67, 1186–1212 (1994).

    Article  Google Scholar 

  8. 8

    Hammond, K. A. et al. Metabolic ceilings under a combination of peak energy demands. Physiol. Zool. 68, 1479–1506 (1994).

    Article  Google Scholar 

  9. 9

    Hammond, K. A. & Diamond, J. M. Limits to dietary nutrient intakes and intestinal nutrient uptakes in lactating mice. Physiol. Zool. 67, 282–303 (1994).

    Article  Google Scholar 

  10. 10

    Daan, S. et al. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am. J. Physiol. 259, R333–340 (1990).

    CAS  Google Scholar 

  11. 11

    Koteja, P. On the relation between basal and field metabolic rates in birds and mammals. Funct. Ecol. 5, 56–64 (1991).

    Article  Google Scholar 

  12. 12

    Ricklefs, R. E. et al. The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am. Nat. 147, 1047–1071 (1996).

    Article  Google Scholar 

  13. 13

    Else, P. L. & Hulbert, A. J. Comparison of the ‘mammal machine’ and the ‘reptile machine’: energy production. Am. J. Physiol. 240, R3–9 (1981).

    CAS  PubMed  Google Scholar 

  14. 14

    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  15. 15

    Nagy, K. A. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57, 111–128 (1987).

    Article  Google Scholar 

  16. 16

    Hammond, K. A. & Diamond, J. M. An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiol. Zool. 65, 952–977 (1992).

    Article  Google Scholar 

  17. 17

    Secor, S. M. et al. Rapid upregulation of snake intestine in response to feeding—a new model of intestinal adaptation. Am. J. Physiol. 266, G695–705 (1994).

    CAS  PubMed  Google Scholar 

  18. 18

    Secor, S. M. & Diamond, J. M. Adaptive responses to feeding in Burmese pythons—pay before pumping. J. Exp. Biol. 198, 1313–1325 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Karasov, W. H. et al. What transport adaptations enable mammals to absorb sugars and amino acids faster than reptiles? Am. J. Physiol. 249, G271–283 (1985).

    CAS  Article  Google Scholar 

  20. 20

    Rensch, I. & Rensch, B. Relative Organmasse bei tropischen Warmblütern. Zool. Anzeiger 156, 106–124 (1956).

    Google Scholar 

  21. 21

    Konarzewski, M. & Diamond, J. M. Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49, 1239–1248 (1995).

    Article  Google Scholar 

  22. 22

    Martin, A. W. & Fuhrman, F. A. The relationship between summated tissue respiration and metabolic rate in the mouse and dog. Physiol. Zool. 28, 18–34 (1955).

    Article  Google Scholar 

  23. 23

    Johnson, D. E. et al. Changes in liver and gastroinetestinal tract energy demands in response to physiological workload in ruminants. J. Nutr. 120, 649–655 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Weibel, E. R. et al. Diversity in Biological Design (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  25. 25

    Root, T. Energy constraints on avian distribution and abundances. Ecology 69, 330–339 (1988).

    Article  Google Scholar 

  26. 26

    Ricklefs, R. E. Adaptation, constraint, and compromise on avian post-natal development. Biol. Rev. 54, 269–290 (1979).

    CAS  Article  Google Scholar 

  27. 27

    Amthor, J. S. Respiration and Crop Productivity (Springer, New York, 1989).

    Book  Google Scholar 

  28. 28

    Hansen, L. D. et al. Prediction of long-term growth rates of larch clones by calorimetric measurement of metabolic heat rates. Can. J. For. Res. 19, 606–611 (1989).

    Article  Google Scholar 

  29. 29

    Royall, D. et al. Continuous measurements of energy expenditure in ventilated burn patients: an analysis. Critical Care Med. 22, 399–406 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Koteja, P. et al. Maximum cold and lactation induced rate of energy assimilation in Acomys cahirinus. Polish Ecol. Studies 20, 369–374 (1994).

    Google Scholar 

  31. 31

    Koteja, P. Maximum cold-induced energy assimilation in a rodent, Apodemus flavicollis. Comp. Biochem. Physiol. 112, 479–485 (1995).

    Article  Google Scholar 

  32. 32

    McDevitt, R. M. & Speakman, J. R. Central limits to sustainable metabolic rate have no role in cold acclimation of the short-tailed field vole (Microtus agrestis). Physiol. Zool. 67, 1117–1139 (1994).

    Article  Google Scholar 

  33. 33

    Hayes, J. P. Altitudinal and seasonal effects on aerobic metabolism of deer mice. J. Comp. Physiol. 159, 453–459 (1989).

    CAS  Article  Google Scholar 

  34. 34

    Kenagy, G. J. et al. Energy expenditure during lactation in relation to litter size in free-living golden-mantled ground squirrels. J. Anim. Acol. 59, 73–88 (1990).

    Article  Google Scholar 

  35. 35

    Poppitt, S. D. et al. Energetics of reproduction in the lesser hedgehog tenrec Echinops telfairi (Martin). Physiol. Zool. 67, 976–994 (1994).

    Article  Google Scholar 

  36. 36

    Roby, D. D. & Ricklefs, R. E. Energy expenditure in adult least auklets and diving petrels during the chick-rearing period. Physiol. Zool. 59, 661–678 (1986).

    Article  Google Scholar 

  37. 37

    Bryant, D. C. et al. Reproductive energetics of two tropical bird species. Auk 101, 25–37 (1984).

    Google Scholar 

  38. 38

    Obst, B. S. et al. Energy utiization by Wilson's storm-petrels (Oceanites oceanicus). Physiol. Zool. 60, 200–210 (1987).

    Article  Google Scholar 

  39. 39

    Brit-Friesen, V. L. et al. Activity-specific metabiic rates of free-living northern gannets and other seabirds. Ecology 70, 357–367 (1989).

    Article  Google Scholar 

  40. 40

    Adams, N. J. et al. Energy expenditure and food consumption by breeding Cape gannets Morus capensis. Mar. Ecol. Progr. Ser. 70, 1–9 (1991).

    ADS  Article  Google Scholar 

  41. 41

    Ballance, L. T. Flight energetics of free-ranging red-footed boobies (Sula sula). Physiol. Zool. 68, 887–914 (1995).

    Article  Google Scholar 

  42. 42

    Koteja, P. Limits to the energy budget in a rodent, Peromyscus maniculatus: the central limitation hypothesis. Physiol. Zool. 69, 981–993 (1996).

    Article  Google Scholar 

  43. 43

    Koteja, P. Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69, 994–1020 (1996).

    Article  Google Scholar 

  44. 44

    Panter-Brick, C. Seasonality of energy expenditure during pregnancy and lactation for rural Nepali women. Am. J. Clin. Nutr. 57, 620–628 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hammond, K., Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997). https://doi.org/10.1038/386457a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing