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ments'2-4. I would therefore like to encourage 
readers to study the geometry shown in the 
panel (below) with a sheet of paper. It can be 
easily seen in such an experiment that the 
curvature is localized near the ridge that con­
nects two opposing corners. 

Witten and Li2 give a very simple argu­
ment for the shape of the edge connecting 
two corners, and the dependence of edge 
energy on scale (see panel). The simplicity of 
their argument means that it has had to be 
checked carefully to test its validity and its 
range of applicability. This has been done by 
computer simulations of simple models of 
triangulated surfaces, which were intro­
duced sometime ago by Kantor and Nelson5• 

The numerical studies, carried out by Witten 
and co-workers4 and by Kroll and co-work­
ers6, show that the scaling laws do indeed 
describe the asymptotic behaviour of large 
fullerene balls. However, quite large system 
sizes are necessary in order to observe this 

Scaling ridges 
Witten and Li2 give a very 
simple scaling argument 
for the shape of the 
edge connecting two 
corners of an elastic 
icosahedron, depicted in 
the figure here. Any 
deformation that involves 
most of the bonds on 

Figure l Curvature energy distribution 
in a hexagonal sheet of diameter L, 
which has been crushed into a sphere 
of radius R, = L/6. Darker regions 
have higher energy density. (From 
ref. l.) 

behaviour, with edge lengths 1,000 times the 
effective thickness of the sheet or more. For 
smaller systems, such as C60, the bending 
energy of the cone-shaped regions near the 
corners dominates4.6. 

Kramer and Witten1 have now gone 
beyond the study of isolated stretching 
ridges. In their computer simulation, a near­
ly flat sheet is approximated by a triangular 
network of springs with some bending elas­
ticity. They put the sheet into a spherical 
shell, and slowly decrease the shell radius Ro 
until it is much smaller than the diameter L 
of the initial sheet. The resulting distribu­
tion of the curvature energy is shown in Fig. 
1. It clearly demonstrates the formation of 
stretching ridges. About 40% of the energy is 
localized in very small areas (vertices), 
which correspond to the corners of the 
fullerene balls; the next 40% is contained in 
the narrow ridges that connect the vertices. 
Since the length of each ridge is found to be 

compressed', at a 
prohibitively large cost in 
stretching energy), the 
length of the mid-line 
must therefore increase 
by a fraction of order y 

the surface costs an 
energy proportional to 
the area; therefore, 
stretching has to be 
confined to narrow 
ridges along the edges. 
The surface near the 
edge is now assumed to 
have a roughly 
cylindrical shape, with a 
radius of curvature-R.t at 
it~ midpoint. For a 
distance R between the 
corners, the total 
curvature ener.gy is 
approximately KAR.t-2 , 

where K is the bending 
rigidity and A=~.t is the 
area of the curved 
region. The curvature of 
the edge implies that the 
mid-line of the bend 
retracts inward. Because 
the distance R cannot 
change (this would 
require the faces of the 
icosahedron to be 

= (R.tiR't The fraction y is 
proportional to the 
change of the 
carbon-carbon bond 
length along the ridge, 
so the bond stretching 
energy is about KoAr. 
where K0 is the bond's 
elastic modulus. 
Minimization of the total 
energy then gives the 
result that the radius of 
the edge curvature 
scales as R.l = R213, and 
the total edge energy as 
-R1' 3. So for large R, the 
curvature is indeed 
concentrated into narrow 
(small R.tl ridges. Gel 
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similar to the radius ~ of the confining 
sphere, their number must go as (L!~)Z, 
so the total elastic energy should scale as 
~-513 (see panel). The simulation results are 
consistent with this prediction. 

The theory of crumpled sheets applies to 
macroscopic as well as to microscopic elastic 
sheets. The work of Witten and co-work­
ers1 '2'\ which led to the present understand­
ing of the crumpled state, originated in stud­
ies of the properties of fluid and polymer 
membranes7'8• For these microscopic sur­
faces, thermal fluctuations can be impor­
tant. It has been shown, for example, that 
thermal fluctuations crumple non-self­
avoiding polymerized membranes with 
small bending rigidities5 without any exter­
nal compression. And fluid membranes, 
which have no stretching energy, collapse 
into crumpled, branched-polymer-like 
shapes for sufficiently low bending rigidity 
due to thermal fluctuations9, even with self­
avoidance. 

But self-avoidance stabilizes the flat 
phase10 in all real polymerized membranes, 
such as graphite-oxide sheets11 or the spec­
trio network of red blood cells12, giving them 
the elastic stiffness relevant to the new study. 
Further, thermal fluctuations should not 
modify the scaling behaviour of stretching 
ridges13• So knowledge about ridges may 
help us understand the passage of red 
blood cells through narrow capillaries1\ for 
example. 

It is the subtle interplay between stretch­
ing, bending and thermal fluctuations which 
makes this field so exciting, and which gives 
microscopic membranes their unique prop­
erties. The work of Kramer and Witten is a 
beautiful example of the contribution that 
physics can make to materials research and 
mechanical engineering, and it should have 
important implications for the understand­
ing ofbiological systems. D 
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