Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An atypical topoisomerase II from archaea with implications for meiotic recombination

Abstract

Type II topoisomerases help regulate DNA topology during transcription, replication and recombination by catalysing DNA strand transfer through transient double-stranded breaks1. All type II topoisomerases described so far are members of a single protein family2. We have cloned and sequenced the genes encoding the A and B subunits of topoisomerase II from the archaeon Sulfolobus shibatae. This enzyme is the first of a new family. It has no similarity with other type II topoisomerases, except for three motifs in the B subunit probably involved in ATP binding and hydrolysis. We also found these motifs in proteins of the Hsp903 and MutL4 families. The A subunit has similarities with four proteins of unknown function. One of them, the Saccharomyces cerevisiae Spo115 protein, is required for the initiation of meiotic recombination. Mutagenesis, performed on SPO11, of the single tyrosine conserved between the five homologues shows that this amino acid is essential for Spo11 activity. By analogy with the mechanism of action of known type II topoisomerases, we suggest that Spo11 catalyses the formation of double-strand breaks that initiate meiotic recombination in S. cerevisiae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, J. C. DNA toposiomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  Google Scholar 

  2. Caron, P. L. & Wang, J. C. Alignment of primary sequences of DNA topoisomerases. In Advances in Pharmacology (ed. Liu, L. F.) 271–297 (Biology Academic, New York, 1994).

    Google Scholar 

  3. Gupta, R. S. Phylogenetic analysis of the 90kDa heat shock family of protein sequences and an examination of the relationship among animal, plants and fungi species. Mol. Biol. Evol. 12, 1063–1073 (1995).

    CAS  PubMed  Google Scholar 

  4. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Atcheson, C. L., DiDomenico, B., Frackman, S., Esposito, R. E. & Elder, R. T. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl Acad. Sci. USA 84, 8035–8039 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Woese, C. R. & Fox, G. E. Phylogenetic structure of prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Homes, M. L., Nuttall, S. D. & Dyall-Smith, M. L. Cosntruction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173, 3807–3813 (1991).

    Article  Google Scholar 

  8. Bergerat, A., Gadelle, D. & Forterre, P. Purification of DNA topoisomerase II from the hyperthermophilic Archaeon Sulfolobus shibatae. J. Biol. Chem. 269, 27663–27669 (1994).

    CAS  PubMed  Google Scholar 

  9. Wilson, R. et al. 2.2 Mb of contigous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Lin, Y. & Smith, G. R. Transient, meiosis-induced expression of rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics 136, 769–779 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 1058–1072 (1995).

    Article  ADS  Google Scholar 

  12. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacterian and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A. & Dodson, G. Crystal structure of an N-term fragment of the DNA gyrase protein. Nature 351, 624–629 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Jackson, A. P. & Maxwell, A. Identifying the catalytic residue of the ATPase reaction of DNA gyrase. Proc. Natl Acad. Sci. USA 90, 11232–11236 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Louvion, F. L., Warth, R. & Picard, D. Two eukaryotic-specific regions of Hsp82 are dispensable for its viability. Proc. Natl Acad. Sci. USA 93, 13937–13942 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of E. coli. Nucleic Acids Res. 24, 2498–2504 (1996).

    Article  CAS  Google Scholar 

  17. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).

    Article  CAS  Google Scholar 

  18. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436 (1990).

    Article  CAS  Google Scholar 

  19. de Massy, B., Rocco, V. & Nicolas, A. The nucleotide maping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 14, 4589–4598 (1995).

    Article  CAS  Google Scholar 

  20. Liu, J., Wu, T.-C. & Lichten, M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608 (1995).

    Article  CAS  Google Scholar 

  21. Keeney, S. & Kleckner, N. Covalent protein-DNA complexes at 5′ strand termini of meiosis-specific double-strand breaks in yeast. Proc. Natl Acad. Sci. USA 92, 11274–11278 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Atcheson, C. L. & Esposito, R. E. Meiotic recombination in yeast. Curr. Opin. Genet. Dev. 3, 736–744 (1993).

    Article  CAS  Google Scholar 

  23. Cao, L., Alani, E. & Kleckner, N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101 (1990).

    Article  CAS  Google Scholar 

  24. Loidl, J., Klein, F. & Shertan, H. Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J. Cell Biol. 125, 1191–1200 (1994).

    Article  CAS  Google Scholar 

  25. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Szent-Gyorgyi, C. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol. Cell. Biol. 15, 6754–6769 (1995).

    Article  CAS  Google Scholar 

  27. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalysed by Spoll, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  28. de Massy, B., Baudat, F. & Nicolas, A. Initiation of meiotic recombination in Saccharomyces cerevisiae haploid meiosis. Proc. Natl Acad. Sci. USA 91, 11929–11933 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergerat, A., de Massy, B., Gadelle, D. et al. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386, 414–417 (1997). https://doi.org/10.1038/386414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386414a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing