Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous stratification in granular mixtures


Granular materials1–5 segregate according to grain size when exposed to periodic perturbations such as vibrations6–12. Moreover, mixtures of grains of different sizes can also spontaneously segregate in the absence of external perturbations: when such a mixture is simply poured onto a pile, the large grains are more likely to be found near the base, while the small grains are more likely to be near the top13–20. Here we report another size-separation effect, which arises when we pour a granular mixture between two vertical plates: the mixture spontaneously stratifies into alternating layers of small and large grains whenever the large grains have larger angle of repose than the small grains. We find only spontaneous segregation, without stratification, when the large grains have smaller angle of repose than the small grains. The stratification is related to the occurrence of avalanches: during each avalanche, the grains separate into a pair of static layers, with the small grains forming a sublayer underneath the layer of large grains.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Chapman & Hall, London, 1941).

    Google Scholar 

  2. Jaeger, H. M. & Nagel, S. R. Physics of the granular state. Science 255, 1523–1531 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Herrmann, H. J. in Disorder and Granular Media (eds Bideaux, D. & Hansen, A.) 305–320 (North-Holland, Amsterdam, 1993).

    Google Scholar 

  4. Edwards, S. F. in Granular Matter: An Interdisciplinary Approach (ed. Mehta, A.) 121–140 (Springer, New York, 1994).

    Book  Google Scholar 

  5. Wolf, D. E. in Computational Physics: Selected Methods, Simple Exercises, Serious Applications (eds Hoffman, K. H. & Schreiber, M.) 64–95 (Springer, Berlin, 1996).

    Book  Google Scholar 

  6. Williams, J. C. The segregation of particulates materials. A review. Powder Technol. 15, 245–251 (1976).

    Article  ADS  Google Scholar 

  7. Rosato, A., Strandburg, K. J., Prinz, F. & Swendsen, R. H. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Gallas, J. A. C., Herrmann, H. J. & Sokolowski, S. Convection cells in vibrating granular media. Phys. Rev. Lett. 69, 1371–1374 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Knight, J. B., Jaeger, H. M. & Nagel, S. R. Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728–3731 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Zik, O., Levine, D., Lipson, S. G., Shtrikman, S. & Stavans, J. Rotationally induced segregation of granular materials. Phys. Rev. Lett. 73, 644–647 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Clément, E., Rajchenbach, J. & Duran, J. Mixing of a granular material in a bi-dimensional rotating drum. Europhys. Lett. 30, 7–12 (1995).

    Article  ADS  Google Scholar 

  12. Cooke, W., Warr, S., Huntley, J. M. & Ball, R. C. Particle size segregation in a two-dimensional bed undergoing vertical vibration. Phys. Rev. E 53, 2812–2822 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Brown, R. L. The fundamental principles of segregation. J. Inst. Fuel 13, 15–19 (1939).

    Google Scholar 

  14. Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49–63 (1954).

    Article  ADS  Google Scholar 

  15. Drahun, J. A. & Bridgwater, J. The mechanisms of free surface segregation. Powder Technol. 36, 39–53 (1983).

    Article  Google Scholar 

  16. Fayed, M. E. & Otten, L. (eds) Handbook of Powder Science and Technology 428–433 (Van Nostrand Reinhold, New York, 1984).

  17. Savage, S. B. in Developments in Engineering Mechanics (ed. Selvadurai, A. P. S.) 347–363 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  18. Savage, S. B. & Lun, C. K. K. Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Savage, S. B. in Theoretical and Applied Mechanics (eds Germain, P., Piau, M. & Caillerie, D.) 241–266 (Elsevier, Amsterdam, 1989).

    Book  Google Scholar 

  20. Meakin, P. A simple two-dimensional model for particle segregation. Physica A 163, 733–746 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Bagnold, R. A. The shearing and dilation of dry sand and the ‘singing’ mechanism. Proc. R. Soc. Lond. A 295, 219–232 (1966).

    Article  ADS  Google Scholar 

  22. Jaeger, H. M., Liu, C.-H. & Nagel, S. R. Relaxation at the angle of repose. Phys. Rev. Lett. 62, 40–43 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Makse, H. A., Cizeau, P. & Stanley, H. E. Possible stratification mechanism in granular mixtures. Phys. Rev. Lett. (submitted).

  24. Williams, J. C. The segregation of powders and granular materials. Univ. Sheffield Fuel Soc. J. 14, 29–34 (1963).

    Google Scholar 

  25. Williams, J. C. The mixing of dry powders. Powder Technol. 2, 13–20 (1968).

    Article  CAS  Google Scholar 

  26. Allen, J. R. L. Sedimentary Structures: their Character and Physical Basis (Elsevier, Amsterdam, 1982).

    Google Scholar 

  27. Boutreux, T. & de Gennes, P.-G. Surface flows of granular mixtures: I. General principles and minimal model. J. Phys. I France 6, 1295–1304 (1996).

    Article  Google Scholar 

  28. Bouchaud, J.-P., Cates, M. E., Prakash, J. R. & Edwards, S. F. Hysteresis and metastability in a continuum sandpile model. Phys. Rev. Lett. 74, 1982–1985 (1995).

    Article  ADS  CAS  Google Scholar 

  29. de Gennes, P.-G. Dynamique superficielle d'un matériau granulaire. C. R. Acad. Sci. 321 [IIb], 501–506 (1995).

    CAS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Makse, H., Havlin, S., King, P. et al. Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing