Review Article | Published:

Photonic crystals: putting a new twist on light

Naturevolume 386pages143149 (1997) | Download Citation

Subjects

  • An Erratum to this article was published on 19 June 1997

Abstract

Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Joannopoulos, J., Meade, R. & Winn, J. Photonic Crystals (Princeton Press, Princeton, NJ, 1995).

  2. 2

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

  3. 3

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

  4. 4

    John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

  5. 5

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

  6. 6

    Drake, M. & Genack, A. Observation of nonclassical optical diffusion. Phys. Rev. Lett. 63, 259–262 (1989).

  7. 7

    Genack, A. & Garcia, N. Observation of photon localization in a three-dimensional disordered system. Phys. Rev. Lett. 66, 2064–2067 (1991).

  8. 8

    Robertson, W. et al. Measurement of photonic band structure in a two-dimensional periodic dielectric array. Phys. Rev. Lett. 68, 2023–2026 (1992).

  9. 9

    Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Nature of the photonic band gap: some insights from a field analysis. J. Opt. Soc. Am. B 10, 328–332 (1993).

  10. 10

    Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Existence of a photonic band gap in two dimensions. Appl. Phys. Lett. 61, 495–497 (1992).

  11. 11

    Villeneuve, P. & Piché, M. Photonic band gaps in two-dimensional square and hexagonal structures. Phys. Rev. B 46, 4969–4972 (1992).

  12. 12

    Grüning, U., Lehmann, V., Ottow, S. & Busch, K. Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm. Appl. Phys. Lett. 68, 747–749 (1996).

  13. 13

    Krauss, T., De La Rue, R. & Band, S. Two-dimensional photonic bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

  14. 14

    Cassagne, D., Jouanin, C. & Bertho, D. Hexagonal photonic-band-gap structures. Phys. Rev. B 53, 7134–7142 (1996).

  15. 15

    Mekis, A. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).

  16. 16

    Slusher, R. Semiconductor microlasers and their applications. Opt. Photonics News 4 (2), 8–17 (1993).

  17. 17

    Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Photonic bound states in periodic dielectric materials. Phys. Rev. B 44, 13772–13774 (1991).

  18. 18

    Yablonovitch, E. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

  19. 19

    McCall, S., Platzman, P., Dalichaouch, R., Smith, D. & Schultz, S. Microwave propagation in two-dimensional dielectric lattices. Phys. Rev. Lett. 67, 2017–2020 (1991).

  20. 20

    Leung, K. Defect modes in photonic band structures: a Green's function approach using vector Wannier functions. J. Opt. Soc. Am. B 10, 303–306 (1993).

  21. 21

    Maradudin, A. & McGurn, A. in Photonic Band Gaps and Localizaiton (ed. Soukoulis, C.) 247–268 (Plenum, New York, 1993).

  22. 22

    Fan, S. et al. Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267–1272 (1995).

  23. 23

    Sigalas, M., Soukoulis, C., Chan, C. & Ho, K. in Photonic Band Gap Materials (ed. Soukoulis, C.) 173–202 (Kluwer, Dordrecht, 1996).

  24. 24

    Birks, T., Atkin, D., Wylangowski, G., Russel, P. & Roberts, P. Photonic Band Gap Materials (ed. Soukoulis, C.) 437–444 (Kluwer, Dordrecht, 1996).

  25. 25

    Villeneuve, P., Fan, S. & Joannopoulos, J. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54, 7837–7842 (1996).

  26. 26

    Meade, R. et al. Novel applications of photonic band gap materials: low loss bends and high Q cavities. J. Appl. Phys. 75, 4753–4755 (1994).

  27. 27

    Villeneuve, P. et al. Air-bridge microcavities. Appl. Phys. Lett. 67, 167–169 (1995).

  28. 28

    Chen, J., Haus, H., Fan, S. Villeneuve, P. & Joannopoulos, J. Optical filters from photonic band gap air bridges. IEEE J. Lightwave Tech. 14, 2575–2580 (1996).

  29. 29

    Joannopoulos, J. The almost-magical world of photonic crystals. Braz. J. Phys. 26, 58–67 (1996).

  30. 30

    Yablonovitch, E., Gmitter, T. & Leung, K. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

  31. 31

    Chan, C., Ho, K. & Soukoulis, C. Photonic band-gaps in experimentally realizable periodic structures. Europhys. Lett. 16, 563–568 (1991).

  32. 32

    Sözüer, H. & Haus, J. Photonic bands: simple-cubic lattice. J. Opt. Soc. Am. B 10, 296–302 (1993).

  33. 33

    Ho, K., Chan, C., Soukoulis, C., Biswas, R. & Sigalas, M. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commnun. 89, 413–416 (1994).

  34. 34

    Sözüer, H. & Dowling, J. Photonic band calculations for woodpile structures. J. Mod. Opt. 41, 231–239 (1994).

  35. 35

    Özbay, E. et al. Micromachined millimeter-wave photonic band-gap crystals. Appl. Phys. Lett. 64, 2059–2061 (1994).

  36. 36

    Cheng, C. & Scherer, A. Fabrication of photonic band-gap crystals. J. Vac. Sci. Technol. B 13, 2696–2700 (1995).

  37. 37

    Fan, S., Villeneuve, P., Meade, R. & Joannopoulos, J. Design of three-dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett. 65, 1466–1468 (1994).

  38. 38

    Brown, R. & McMahon, O. Large electromagnetic stop bands in metallodielectric photonic crystals. Appl. Phys. Lett. 67, 2138–2140 (1995).

  39. 39

    McGurn, A. & Maradudin, A. Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays. Phys. Rev. 548, 17576–17579 (1993).

  40. 40

    Pendry, J. Photonic band structures. J. Mod. Opt. 41, 209–229 (1994).

  41. 41

    Sigalas, M., Chan, C., Ho, K. & Soukoulis, C. Metallic photonic band-gap materials. Phys. Rev. B 52, 11744–11751 (1995).

  42. 42

    Fan, S., Villeneuve, P. & Joannopoulos, J. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 54, 11245–11251 (1996).

Download references

Author information

Affiliations

  1. Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

    • J. D. Joannopoulos
    • , Pierre R. Villeneuve
    •  & Shanhui Fan

Authors

  1. Search for J. D. Joannopoulos in:

  2. Search for Pierre R. Villeneuve in:

  3. Search for Shanhui Fan in:

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/386143a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.