Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein

Abstract

Calcification of the extracellular matrix (ECM) can be physiological or pathological. Physiological calcification occurs in bone when the soft ECM is converted into a rigid material capable of sustaining mechanical force; pathological calcification can occur in arteries1 and cartilage2 and other soft tissues. No molecular determinant regulating ECM calcification has yet been identified. A candidate molecule is matrix GLA protein (Mgp), a mineral-binding ECM protein3 synthesized by vascular smooth-muscle cells and chondrocytes, two cell types that produce an uncalcified ECM. Mice that lack Mgp develop to term but die within two months as a result of arterial calcification which leads to bloodvessel rupture. Chondrocytes that elaborate a typical cartilage matrix can be seen in the affected arteries. Mgp-deficient mice additionally exhibit inappropriate calcification of various cartilages, including the growth plate, which eventually leads to short stature, osteopenia and fractures. These results indicate that ECM calcification must be actively inhibited in soft tissues. To our knowledge, Mgp is the first inhibitor of calcification of arteries and cartilage to be characterized in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ross, R. Nature 362, 801–809 (1993).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Manjin, H. J. & Brandt, K. D. Pathogenesis of Osteoarthritis (eds Kelley, W. N., Harris, E. D., Ruddy, S. & Sledge, C. B.) 1469–1479 (Saunders, Philadelphia, 1989).

    Google Scholar 

  3. 3

    Hauschka, P., Lian, J., Cole, D. & Gundberg, C. Physiol. Rev. 69, 990–1047 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Furie, B. & Furie, B. C. Cell 53, 505–517 (1988).

    CAS  Article  Google Scholar 

  5. 5

    Ducy, P. et al. Nature 382, 448–452 (1996).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. Science 269, 1684–1691 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tanimura, A., McGregor, D. H. & Anderson, H. C. J. Exp. Pathol. 2, 261–273 (1986).

    CAS  PubMed  Google Scholar 

  8. 8

    Solursh, M. Cell and Matrix Interactions during Limb Chondrogenesis in Virtol (ed. Trelsted, R. L.) 277–303 (Liss, New York, 1984).

    Google Scholar 

  9. 9

    Anderson, H. C. J. Cell Biol. 35, 81 (1967). final page?

    CAS  Article  Google Scholar 

  10. 10

    Tanimura, A., McGregor, D. H. & Anderson, H. C. Proc. Soc. Exp. Biol. Med. 172, 173–177 (1983).

    CAS  Article  Google Scholar 

  11. 11

    Singleton, E. B. & Merten, D. F. Pediatr. Radiol. 1, 2–7 (1973).

    CAS  Article  Google Scholar 

  12. 12

    Qiao, J. H. et al. Arterioscler. Thromb. 14, 1480–1497 (1994).

    CAS  Article  Google Scholar 

  13. 13

    O'Brien, K. D. et al. Circulation 92, 2163–2168 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Reid, J. D. & Andersen, M. E. Atherosclerosis 101, 213–224 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, M. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Science 258, 468–471 (1992).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Plump, A. S. et al. Cell 71, 343–353 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Nakashima, Y., Plump, A. S., Raines, W., Breslow, J. L. & Ross, R. Arterioscler. Thromb. 14, 133–141 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Breslow, J. L. Science 272, 685–688 (1996).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Ross, R. & Bornstein, P. Sci. Am. 224, 44–52 (1971).

    CAS  Article  Google Scholar 

  20. 20

    Smithies, O. & Maeda, N. Proc. Natl Acad. Sci. USA 92, 5266–5272 (1995).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Karaplis, A. C. et al. Genes Dev. 8, 277–289 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Vortkamp, A. et al. Science 273, 613–622 (1996).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ramirez-Solis, R., Davis, A. & Bradley, A. Meth. Enzymol. 225, 855–878 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Cell 64, 693–702 (1991).

    CAS  Article  Google Scholar 

  25. 25

    McMahon, A. P. & Bradley, A. Cell 62, 1073–1085 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Kochhar, D. M. Teratology 7, 289–298 (1973).

    CAS  Article  Google Scholar 

  27. 27

    McKee, M. D. & Nanci, A. Microsc. Res. Tech. 33, 141–164 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Sundin, O. H., Busse, H. G., Rogers, M. B., Gudas, L. J. & Eichele, G. Development 108, 47–58 (1990).

    CAS  PubMed  Google Scholar 

  29. 29

    Wilkinson, D. G. in Situ Hybridization: A Practical Approach (ed. Wilkinson, D. G.) 257–263 (IRL, Oxford, 1992).

    Google Scholar 

  30. 30

    Luo, G., D'Souza, R., Hogue, D. & Karsenty, G. J. Bone Min. Res. 10, 325–334 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, G., Ducy, P., McKee, M. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997). https://doi.org/10.1038/386078a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing