Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptation of retinal processing to image contrast and spatial scale

Abstract

Owing to the limited dynamic range of a neuron's output, neural circuits are faced with a trade-off between encoding the full range of their inputs and resolving gradations among those inputs. For example, the ambient light level varies daily over more than nine orders of magnitude1, whereas the firing rate of optic nerve fibres spans less than two2. This discrepancy is alleviated by light adaptation3: as the mean intensity increases, the retina becomes proportionately less sensitive. However, image statistics other than the mean intensity also vary drastically during routine visual processing. Theory predicts that an efficient visual encoder should adapt its strategy not only to the mean, but to the full shape of the intensity distribution4–6. Here we report that retinal ganglion cells, the output neurons of the retina, adapt to both image contrast—the range of light intensities—and to spatial correlations within the scene, even at constant mean intensity. The adaptation occurs on a scale of seconds, one hundred times more slowly than the immediate light response, and involves 2–5-fold changes in the firing rate. It is mediated within the retinal network: two independent sites of modulation after the photo-receptor cells appear to be involved. Our results demonstrate a remarkable plasticity in retinal processing that may contribute to the contrast adaptation of human vision7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rushton, W. A. Visual Adaptation (The Ferrier Lecture, 1962). Proc. R. Soc. Lond. B 162, 20–46 (1965).

    ADS  CAS  PubMed  Google Scholar 

  2. Barlow, H. B. Critical limiting factors in the design of the eye and visual cortex (The Ferrier Lecture, 1980). Proc. R. Soc. Lond. B 212, 1–34 (1981).

    ADS  CAS  PubMed  Google Scholar 

  3. Shapley, R. & Enroth-Cugell, C. Visual Adaptation and Retinal Gain Controls. Progr. Ret. Res. 3, 263–346 (1984).

    Article  Google Scholar 

  4. Laughlin, S. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch. 36, 910–912 (1981).

    Article  CAS  Google Scholar 

  5. de Ruyter van Steveninck, R. R., Bialek, W., Potters, M. & Carlson, R. H. Statistical adaptation and optimal estimation in movement computation by the blowfly visual system. Proc IEEE Int. Conf. Systems, Man, and Cybernetics 302–308 (1994).

  6. DeWeese, M. & Bialek, W. Information flow in sensory neurons. Il Nuovo Cimento 17D, 733–738 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Blakemore, C. & Campbell, F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237–260 (1969).

    Article  CAS  Google Scholar 

  8. Ohzawa, I., Sclar, G. & Freeman, R. D. Contrast gain control in the cat's visual system. J. Neurophysiol. 54, 651–667 (1985).

    Article  CAS  Google Scholar 

  9. Sakai, H. M. & Naka, K. Signal transmission in the catfish retina. V. Sensitivity and circuit. J. Neurophysiol. 58, 1329–1350 (1987).

    Article  CAS  Google Scholar 

  10. Meister, M., Pine, J. & Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Meth. 51, 95–106 (1994).

    Article  CAS  Google Scholar 

  11. Shapley, R. M. & Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. 285, 275–298 (1978).

    Article  CAS  Google Scholar 

  12. Victor, J. D. The dynamics of the cat retinal X cell centre. J. Physiol. 386, 219–246 (1987).

    Article  CAS  Google Scholar 

  13. Wang, J.-L. & Naka, K.-I. Contrast gain control in the lower vertebrates retinas. Soc. Neurosci. Abstr. 21, 1644 (1995).

    Google Scholar 

  14. Copenhagen, D. R. & Green, D. G. The absence of spread of adaptation between rod photoreceptors in turtle retina. J. Physiol. 369, 161–181 (1985).

    Article  CAS  Google Scholar 

  15. Dacheux, R. F. & Raviola, E. Horizontal cells in the retina of the rabbit. J. Neurosci. 2, 1486–1493 (1982).

    Article  CAS  Google Scholar 

  16. Hare, W. A. & Owen, W. G. Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander. J. Physiol. 421, 223–245 (1990).

    Article  CAS  Google Scholar 

  17. Werblin, F., Maguire, G., Lukasiewicz, P., Eliasof, S. & Wu, S. M. Neural interactions mediating the detection of motion in the retina of the tiger salamander. Visual Neuosci. 1, 317–329 (1988).

    Article  CAS  Google Scholar 

  18. Bloomfield, S. A. Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. J. Neurophysiol. 68, 711–725 (1992).

    Article  CAS  Google Scholar 

  19. Barlow, H. B. & Hill, R. M. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature 200, 1345–1347 (1963).

    Article  ADS  CAS  Google Scholar 

  20. Schieting, S. & Spillmann, L. Flicker adaptation in the peripheral retina. Vision Res. 27, 277–284 (1987).

    Article  CAS  Google Scholar 

  21. Albrecht, D. G., Farrar, S. B. & Hamilton, D. B. Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. J. Physiol. 347, 713–739 (1984).

    Article  CAS  Google Scholar 

  22. Ho, W. A. & Berkley, M. A. Evoked potential estimates of the time course of adaptation and recovery to counterphase gratings. Vision Res. 28, 1287–1296 (1988).

    Article  CAS  Google Scholar 

  23. Giaschi, D., Douglas, R., Marlin, S. & Cynader, M. The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J. Neurophysiol. 70, 2024–2034 (1993).

    Article  CAS  Google Scholar 

  24. Barlow, H. B. & Bridley, G. S. Inter-ocular transfer of movement aftereffects during pressure binding of the stimulated eye. Nature 200, 1347 (1963).

    Article  ADS  CAS  Google Scholar 

  25. Meister, M., Lagnado, L. & Baylor, D. A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Brainard, D. Calibration of a computer controlled color monitor. Color Res. Appl. 14, 23–34 (1989).

    Article  Google Scholar 

  27. Dawis, S. M. Polynomial expressions of pigment nomograms. Vision Res. 21, 1427–1430 (1981).

    Article  CAS  Google Scholar 

  28. Nuboer, J. F. W. & Moed, P. J. Increment-threshold spectral sensitivity in the rabbit. J. Comp. Physiol. 151, 353–358 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnakis, S., Berry, M., Warland, D. et al. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997). https://doi.org/10.1038/386069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386069a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing