Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visual decomposition of colour through motion extrapolation

Abstract

The perception of yellow has played a central role in distinguishing two main theories of colour vision. Hering proposed that yellow results from the activation of a distinct retinal–neural mechanism, whereas according to the Young–Helmholtz–Maxwell view, yellow results from the combined activation of red and green cone mechanisms1. When red and green images are presented separately to corresponding retinal locations in the two eyes, the resulting sensation is yellow1,2. As the pathways from the two eyes do not converge until the cortex, this suggests that yellow can indeed arise from the central combining of separate red and green channels2. I now show that the reverse process can also occur; the visual system can decompose a 'yellow' stimulus into its constituent red and green components. A 'yellow' stimulus was created by optically superimposing a flashed red line onto a moving green bar. If the bar is visible only briefly, the flashed line appears yellow. If the trajectory of the green bar is exposed for sufficient time, however, the line is incorrectly perceived to trail the bar, and appears red. Motion processing occurs in the cortex rather than the retina in primates, and so the ability of motion cues to affect the perception of colour is consistent with the Young–Helmholtz–Maxwell notion of a 'central synthesis' of yellow.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Hurvich, L. M. & Jameson, D. The binocular fusion of yellow in relation to color theories. Science 114, 199–202 (1951).

    Article  ADS  CAS  Google Scholar 

  2. Hecht, S. On the binocular fusion of colors and its relation to theories of color vision. Proc. Natl Acad. Sci. USA 14, 237–241 (1928).

    Article  ADS  CAS  Google Scholar 

  3. Zeki, S. M. The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harb. Symp. Quant. Biol. 40, 591–600 (1975).

    Article  Google Scholar 

  4. Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).

    Article  CAS  Google Scholar 

  5. Ramachandran, V. S. & Gregory, R. L. Does colour provide an input to human motion perception? Nature 275, 55–56 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Cavanagh, P., Tyler, C. W. & Favreau, O. E. Perceived velocity of moving chromatic gratings. J. Opt. Soc. Am. 1, 893–899 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Saito, H., Tanaka, K., Isono, H., Yasuda, M. & Mikami, A. Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp. Brain Res. 75, 1–14 (1989).

    Article  CAS  Google Scholar 

  8. Cropper, S. J. & Derrington, A. M. Rapid colour-specific detection of motion in human vision. Nature 379, 72–74 (1996).

    Article  ADS  CAS  Google Scholar 

  9. MacKay, D. M. Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181, 507–508 (1958).

    Article  ADS  CAS  Google Scholar 

  10. Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Hurvich, L. M. Color Vision (Sinauer, Sunderland, Massachusetts, 1981).

    Google Scholar 

  12. Walraven, J. Spatial characteristics of chromatic induction; the segregatin of lateral effects from straylight artefacts. Vision Res. 13, 1739–1753 (1973).

    Article  CAS  Google Scholar 

  13. Khurana, B. & Nijhawan, R. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    Article  ADS  Google Scholar 

  14. Aho, A.-C., Donner, K., Helenius, S., Olesen Larsen, L. & Reuter, T. Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy. J. Comp. Physiol. 172, 671–682 (1993).

    Article  CAS  Google Scholar 

  15. Richards, W. Visual suppression during passive eye movement. J. Opt. Soc. Am. 58, 1159–1160 (1968).

    Article  CAS  Google Scholar 

  16. Land, E. H. & McCann, J. J. Lightness and the retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Gilchrist, A. The perception of surface blacks and whites. Sci. Am. 24, 88–97 (1979).

    Google Scholar 

  18. Efron, R. The minimum duration of a perception. Neuropsychologia 8, 57–63 (1970).

    Article  CAS  Google Scholar 

  19. Hogben, J. H. & Di Lollo, V. Perceptual integration and perceptual segregation of brief visual stimuli. Vision Res. 14, 1059–1069 (1974).

    Article  CAS  Google Scholar 

  20. Burr, D. Motion smear. Nature 284, 164–165 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Morgan, M. J. Perception of continuity in stroboscopic motion: A temporal frequency analysis. Vision Res. 19, 491–500 (1979).

    Article  CAS  Google Scholar 

  22. Kahneman, D. Method, findings, and theory in studies of visual masking. Psychol. Bull. 70, 404–425 (1968).

    Article  CAS  Google Scholar 

  23. Alpern, M. & Rushton, W. A. H. The specificity of the cone interaction in the after-flash effect. J. Physiol. 176, 473–482 (1965).

    Article  CAS  Google Scholar 

  24. Yellott, J. I. & Wandell, B. A. Color properties of the contrast flash effect: Monoptic vs dichoptic comparisons. Vision Res. 16, 1275–1280 (1976).

    Article  Google Scholar 

  25. Di Lollo, V. & Hogben, J. H. Suppression of visible persistence as a function of spatial separation between inducing stimuli. Percept. Psychophys. 41, 345–354 (1987).

    Article  CAS  Google Scholar 

  26. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  27. Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Boynton, R. M. in Visual Psychophysics and Physiology (eds Armington, J. C., Krauskopf, J. & Wooten, B. R.) 193–207 (Academic, New York, 1978).

    Book  Google Scholar 

  29. Zeki, S. The representation of colours in the cerebral cortex. Nature 284, 412–418 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijhawan, R. Visual decomposition of colour through motion extrapolation. Nature 386, 66–69 (1997). https://doi.org/10.1038/386066a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386066a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing