Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Polycomb-group gene regulates homeotic gene expression in Arabidopsis

Abstract

Cell fate is determined when the commitment of cells to a particular fate is autonomously maintained, irrespective of their environment. In Drosophila, fate determination is maintained through the action of the Polycomb-group and trithorax-group genes, which are required so that states of homeotic gene activity are inherited through cell division. It is shown here that the CURLY LEAF gene of Arabidopsis is necessary for stable repression of a floral homeotic gene and encodes a protein with homology to the product of the Polycomb-group gene Enhancer of zeste. We suggest that Polycomb-group genes have a similar role in fate determination in plants and animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Coen, E. S. & Meyerowitz, E. M. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1991).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bowman, J. L, Smyth, D. R. & Meyerowitz, E. M. Genes directing flower development in Arabidopsis. Plant Cell 1, 37–52 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Carpenter, R. & Coen, E. S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum jamus. Genes Dev. 4, 1483–1493 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Struhl, G. Genes controlling segmentation specification in the Drosophila thorax. Proc. Natl Acad. Sci. USA 79, 7380–7384 (1982).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ingham, P. W. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–33 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Weigel, D. & Meyerowitz, E. M. The ABCs of floral homeotic genes. Cell 78, 203–209 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Heemskerk, J., DiNardo, S., Kostriken, R. & O'Farrell, P. H. Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404–410 (1991).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Simcox, A. A. & Sang, J. H. When does determination occur in Drosophila embryos? Dev. Biol. 97, 212–221 (1983).

    CAS  Article  Google Scholar 

  10. 10

    Lawrence, P. A. & Morata, G. in Insect Development (ed. Lawrence, P. A.) 132–148 (Blackwell, Oxford, 1976).

    Google Scholar 

  11. 11

    Simon, J. Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell Biol. 7, 376–385 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Kennison, J. A. Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet. 9, 75–79 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Struhl, G. & Akam, M. Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J. 4, 3259–3264 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Jones, R. S. & Gelbart, W. M. Genetic analysis of the Enhancer of zeste locus and its role in gene regulation in Drosophila melanogaster. Genetics 126, 185–199 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Breene, T. R. & Harte, P. J. trithorax regulates multiple homeotic genes in the bithorax and Antennapedia complexes and exerts different tissue-specific, parasegment-specific and promoter-specific effects on each. Development 117, 119–134 (1993).

    Google Scholar 

  16. 16

    Grindhart, J. G. J. & Kaufman, T. C. Identification of polycomb and trithorax group responsive elements in the regulatory region of the Drosophila homeotic gene sex combs reduced. Genetics 139, 797–814 (1995).

    Google Scholar 

  17. 17

    Muller, J. Transcriptional silencing by the Polycomb protein in Drosophila embryos. EMBO J. 14, 1209–1220 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Paro, R. Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6, 416–421 (1990).

    CAS  Article  Google Scholar 

  19. 19

    Weigel, D. & Doerner, P. Cell–cell interactions—taking cues for the neighbors. Curr. Biol. 6, 10–12 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Irish, E. E. & Nelson, T. M. Identification of multiple stages in the conversion of maize meristems from vegetative to floral development. Development 112, 891–898 (1991).

    Google Scholar 

  21. 21

    Bradley, D., Vincent, C., Carpenter, R. & Coen, E. Pathways for inflorescence and floral induction in Antirrhinum. Development 122, 1535–1544 (1996).

    CAS  PubMed  Google Scholar 

  22. 22

    Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346, 35–39 (1990).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Drews, G. N., Bowman, J. L. & Meyerowitz, E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991–1002 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Long, D. et al. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. Proc. Natl Acad. Sci. USA 90, 10370–10374 (1993).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Mizukami, Y. & Ma, H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119–131 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Jack, T., Fox, G. L. & Meyerowitz, E. M. Arabidopsis homeotic gene APETALA3 ectopic expression—transcriptional and posttranscriptional regulation determined floral organ identity. Cell 76, 703–716 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Liu, Z. & Meyerowitz, E. M. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121, 975–991 (1995).

    CAS  PubMed  Google Scholar 

  28. 28

    Sutton, W. D., Gerlach, W. L., Schwartz, D. & Peacock, W. J. Molecular analysis of ds controlling element mutations at the ADH1 locus of maize. Science 223, 1265–1268 (1984).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Lüttke, H. A. et al. Selection of AUG initiation codons differs in plants and animals. EMBO J. 6, 43–48 (1987).

    Article  Google Scholar 

  30. 30

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman Basic local alignment search tool. J. Mol. Biol. 215 403–410 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Jones, R. S. & Gelbart, W. M. The Drosophila Polycomb-group gene Enhancer of zeste contains region with a sequence similarity to trithorax. Mol. Cell. Biol. 13, 6357–6366 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var) 3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Carrington, E. A. & Jones, R. S. The Drosophila Enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development 122, 4073–4083 (1996).

    CAS  PubMed  Google Scholar 

  34. 34

    Paro, R. & Hogness, D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl Acad. Sci. USA 88, 263–267 (1991).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Rastelli, L., Chan, C. S. & Pirotta, V. Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J. 12, 1513–1522 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    ADS  Article  Google Scholar 

  38. 38

    Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA 93, 8449–8454 (1996).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. C. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273, 654–657 (1996).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Jofuku, D., van den Boer, B., Van Montagu, M. & Okamuro, J. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225 (1994).

    CAS  Article  Google Scholar 

  41. 41

    van der Lugt, N. M. T. et al. Posterior transformation, neurological abnormalities, and severe hematapoietic defects in mice with a targeted deletion of the bmi-1 protooncogene. Genes Dev. 8, 757–769 (1994).

    CAS  Article  Google Scholar 

  42. 42

    Akaseka, T. et al. A role for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122, 1513–1522 (1996).

    Google Scholar 

  43. 43

    Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    CAS  Article  Google Scholar 

  44. 44

    van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. Determination of cell fate in the Arabidopsis root meristem by directional signalling. Nature 378, 62–65 (1995).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Tröbner, W. et al. Globosa—A homeotic gene which interacts with deficiens in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704 (1992).

    Article  Google Scholar 

  46. 46

    Putterill, J., Robson, F., Lee, K., Simon, R. & Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847–857 (1995).

    CAS  Article  Google Scholar 

  47. 47

    Coen, E. S., Carpenter, R. & Martin, C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296 (1986).

    CAS  Article  Google Scholar 

  48. 48

    Jack, T., Brockman, L. L. & Meyerowitz, E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683–697 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859 (1992).

    CAS  Article  Google Scholar 

  50. 50

    Coen, E. S. et al. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goodrich, J., Puangsomlee, P., Martin, M. et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44–51 (1997). https://doi.org/10.1038/386044a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing